Minimizing robust estimates of sums of parameterized functions
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the IV International Scientific Conference "Actual Problems of Applied Mathematics". Kabardino-Balkar Republic, Nalchik, Elbrus Region, May 22–26, 2018. Part II, Tome 166 (2019), pp. 95-109.

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss the robust approach to constructing machine learning algorithms based on minimizing robust finite sums of parameterized functions. This algorithm is based on finite robust differentiable aggregation summation functions, which are stable with respect to outliers.
Keywords: robust algorithm, neural network, averaging aggregation function, iterative reweighing.
@article{INTO_2019_166_a9,
     author = {Z. M. Shibzukhov},
     title = {Minimizing robust estimates of sums of parameterized functions},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {95--109},
     publisher = {mathdoc},
     volume = {166},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_166_a9/}
}
TY  - JOUR
AU  - Z. M. Shibzukhov
TI  - Minimizing robust estimates of sums of parameterized functions
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 95
EP  - 109
VL  - 166
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_166_a9/
LA  - ru
ID  - INTO_2019_166_a9
ER  - 
%0 Journal Article
%A Z. M. Shibzukhov
%T Minimizing robust estimates of sums of parameterized functions
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 95-109
%V 166
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_166_a9/
%G ru
%F INTO_2019_166_a9
Z. M. Shibzukhov. Minimizing robust estimates of sums of parameterized functions. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the IV International Scientific Conference "Actual Problems of Applied Mathematics". Kabardino-Balkar Republic, Nalchik, Elbrus Region, May 22–26, 2018. Part II, Tome 166 (2019), pp. 95-109. http://geodesic.mathdoc.fr/item/INTO_2019_166_a9/

[1] Khyuber P., Robastnost v statistike, M., 1984 | MR

[2] Shibzukhov Z. M., “Agregiruyuschie korrektnye operatsii nad algoritmami”, Dokl. RAN., 91:3 (2015), 391–393 | MR | Zbl

[3] Beliakov G., Kelarev A., Yearwood J., Robust artificial neural networks and outlier detection, arXiv: 1110.0169v1 [math.OC]

[4] Beliakov G. , Sola H., Calvo T., A Practical Guide to Averaging Functions, Springer, 2016 | MR

[5] Calvo T., Beliakov G., “Aggregation functions based on penalties”, Fuzzy Sets Syst., 161:10 (2010), 1420–1436 | DOI | MR | Zbl

[6] Grabich M., Marichal J.-L., Pap E., Aggregation Functions, Cambridge Univ. Press, Cambridge, 2009 | MR

[7] Huber P. J., Robust Statistics, Wiley, New York, 1981 | MR | Zbl

[8] Knigma D. P., Ba J., Adam: A Method for Stochastic Optimization, arXiv: 1412.6980 [cs.LG] | MR

[9] Koenker R., Quantile regression, Campridge Univ. Press, New York, 2005 | MR | Zbl

[10] Ma Y., Li L., Huang X., Wang S., “Robust support vector machine using least median loss penalty”, IFAC Proc. Vols., 44:1 (2011), 11208–11213 | DOI

[11] Mesiar R., Komornikova M., Kolesarova A., Calvo T., “Aggregation functions: A revision”, Fuzzy Sets and Their Extensions: Representation, Aggregation and Models, eds. Bustince H., Herrera F., Montero J., Springer, Berlin–Heidelberg, 2008 | MR | Zbl

[12] Newey W., Powell J., “Asymmetric least squares estimation and testing”, Econometrica., 55:4 (1987), 819–847 | DOI | MR | Zbl

[13] Rousseeuw P. J., “Least median of squares regression”, J. Am. Stat. Ass., 1984, no. 79, 871–880 | DOI | MR | Zbl

[14] Rousseeuw P. J., Leroy A. M., Robust regression and outlier detection, Wiley, New York, 1987 | MR | Zbl

[15] Schmidt M., Le Roux N., Bach F., “Minimizing finite sums with the stochastic average gradient”, Math. Program., 162:1-2 (2017), 83–112 | DOI | MR | Zbl

[16] Shibzukhov Z. M., “Correct aggregate operations with algorithms”, Pattern Recogn. Image Anal., 24:3 (2014), 377–382 | DOI

[17] Shibzukhov Z. M., “On the principle of empirical risk minimization based on averaging aggregation functions”, Dokl. Math., 96:2 (2017), 494–497 | DOI | MR | Zbl

[18] Vapnik V., The Nature of Statistical Learning Theory, Springer-Verlag, 2000 | MR | Zbl

[19] Yohai V. J., “High breakdown-point and high effciency robust estimates for regression”, Ann. Stat., 1987, no. 15, 642–656 | DOI | MR | Zbl