Identification of the domain, ranges, and values of complex roots of a polynomial with complex coefficients based on stable address sorting
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the IV International Scientific Conference "Actual Problems of Applied Mathematics". Kabardino-Balkar Republic, Nalchik, Elbrus Region, May 22–26, 2018. Part II, Tome 166 (2019), pp. 66-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we present a method of programmatic identification of complex roots of polynomials with complex coefficients without specifying the domain of localization of their roots. The method is based on the algorithm of stable address sorting with minimal amount of calculations. Numerical ranges of the real and imaginary parts of the roots are programmatically determined, the roots are identified without loss of significant figures of the mantissa in the format of presentation of numerical data.
Keywords: localization of complex roots of a polynomial, domain of roots of a polynomial, calculations without losing significant figures, stable address sorting.
@article{INTO_2019_166_a6,
     author = {Ya. E. Romm},
     title = {Identification of the domain, ranges, and values of complex roots of a polynomial with complex coefficients based on stable address sorting},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {66--76},
     publisher = {mathdoc},
     volume = {166},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_166_a6/}
}
TY  - JOUR
AU  - Ya. E. Romm
TI  - Identification of the domain, ranges, and values of complex roots of a polynomial with complex coefficients based on stable address sorting
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 66
EP  - 76
VL  - 166
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_166_a6/
LA  - ru
ID  - INTO_2019_166_a6
ER  - 
%0 Journal Article
%A Ya. E. Romm
%T Identification of the domain, ranges, and values of complex roots of a polynomial with complex coefficients based on stable address sorting
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 66-76
%V 166
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_166_a6/
%G ru
%F INTO_2019_166_a6
Ya. E. Romm. Identification of the domain, ranges, and values of complex roots of a polynomial with complex coefficients based on stable address sorting. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the IV International Scientific Conference "Actual Problems of Applied Mathematics". Kabardino-Balkar Republic, Nalchik, Elbrus Region, May 22–26, 2018. Part II, Tome 166 (2019), pp. 66-76. http://geodesic.mathdoc.fr/item/INTO_2019_166_a6/

[1] Bagmanov A. T., Sanin A. L., “Struktury volnovykh paketov v kvantovoi yame”, Usp. sovr. radioelektroniki., 2005, no. 12, 25–34

[2] Bakhvalov N. S., Chislennye metody, v. 1, Nauka, M., 1973

[3] Bendat Dzh., Pirsol A., Prikladnoi analiz sluchainykh dannykh, Mir, M., 1989

[4] Berezin I. S., Zhidkov N. G., Metody vychislenii, v. 2, Fizmatgiz, M., 1962 | MR

[5] Besekerskii V. A., Popov E. P., Teoriya sistem avtomaticheskogo regulirovaniya, Nauka, M., 1987

[6] Voevodin V. V., Vychislitelnye osnovy lineinoi algebry, Nauka, M., 1977

[7] Gantmakher F. R., Teoriya matrits, Nauka, M., 1988 | MR

[8] Demidovich B. P., Lektsii po matematicheskoi teorii ustoichivosti, Lan, SPb., 2008

[9] Demidovich B. P., Matematicheskie osnovy kvantovoi mekhaniki, Lan, SPb., 2006

[10] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, Lan, M., 2002 | MR

[11] Markushevich A. I., Kratkii kurs teorii analiticheskikh funktsii, Mir, M., 2006

[12] Pistolkors A. A, Litvinov O. S., Vvedenie v teoriyu adaptivnykh antenn, Nauka, M., 1991

[13] Romm Ya. E., “Lokalizatsiya i ustoichivoe vychislenie nulei mnogochlena na osnove sortirovki, I”, Kibernet. sistem. anal., 2007, no. 1, 165–183

[14] Romm Ya. E., Lokalizatsiya oblasti vsekh kompleksnykh kornei mnogochlena, vydelenie ikh diapazonov i vychislenie na osnove sortirovki, Dep. v VINITI 18.07.2017, No 83-V2017, Taganrog. in-t imeni A. P. Chekhova (filial), Taganrog, 2017

[15] Romm Ya. E., “Metod vychisleniya nulei i ekstremumov funktsii na osnove sortirovki s prilozheniem k poisku i raspoznavaniyu. I”, Kibernet. sistem. anal., 2001, no. 4, 142–159 | Zbl

[16] Romm Ya. E., “Metod vychisleniya nulei i ekstremumov funktsii na osnove sortirovki s prilozheniem k poisku i raspoznavaniyu. II”, Kibernet. sistem. anal., 2001, no. 5, 81–101 | Zbl

[17] Romm Ya. E., “Parallelnaya sortirovka sliyaniem po matritsam sravnenii. I”, Kibernet. sistem. anal., 1994, no. 5, 3–23 | Zbl

[18] Romm Ya. E., “Parallelnaya sortirovka sliyaniem po matritsam sravnenii. II”, Kibernet. sistem. anal., 1995, no. 4, 13–37 | MR | Zbl

[19] Romm Ya. E., Zaika I. V., “Chislennaya optimizatsiya na osnove algoritmov sortirovki s prilozheniem k differentsialnym i nelineinym uravneniyam obschego vida”, Kibernet. sistem. anal., 2011, no. 2, 165–180 | MR | Zbl

[20] Uilkinson D. Kh., Algebraicheskaya problema sobstvennykh znachenii, Nauka, M., 1970

[21] Faddeev D. K., Faddeeva V. N., Vychislitelnye metody lineinoi algebry, Nauka, M., 1963 | MR

[22] Forsait L. E., Malkolm M., Mouler K., Mashinnye metody matematicheskikh vychislenii, Mir, M., 1980