Logical approach to finding outliers in data
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the IV International Scientific Conference "Actual Problems of Applied Mathematics". Kabardino-Balkar Republic, Nalchik, Elbrus Region, May 22–26, 2018. Part II, Tome 166 (2019), pp. 49-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we discuss a logical approach to classification of data and identification of outliers in them. We propose an algorithm for finding all possible classes for a given subject area based on the classifier logical function. We analyze these classes and identify the most pronounced patterns corresponding to the classification principles.
Keywords: logical algorithm, outlier, informative value, weight characteristic.
Mots-clés : classifier
@article{INTO_2019_166_a4,
     author = {L. A. Lyutikova},
     title = {Logical approach to finding outliers in data},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {49--56},
     publisher = {mathdoc},
     volume = {166},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_166_a4/}
}
TY  - JOUR
AU  - L. A. Lyutikova
TI  - Logical approach to finding outliers in data
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 49
EP  - 56
VL  - 166
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_166_a4/
LA  - ru
ID  - INTO_2019_166_a4
ER  - 
%0 Journal Article
%A L. A. Lyutikova
%T Logical approach to finding outliers in data
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 49-56
%V 166
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_166_a4/
%G ru
%F INTO_2019_166_a4
L. A. Lyutikova. Logical approach to finding outliers in data. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the IV International Scientific Conference "Actual Problems of Applied Mathematics". Kabardino-Balkar Republic, Nalchik, Elbrus Region, May 22–26, 2018. Part II, Tome 166 (2019), pp. 49-56. http://geodesic.mathdoc.fr/item/INTO_2019_166_a4/

[1] “Dyakonov A. G., Golovina A. M.”, Tr. XIX Mezhdunarodnoi konferentsii DAMDID/RCDL'2017. «Vyyavlenie anomalii v rabote mekhanizmov metodami mashinnogo obucheniya. Analitika i upravlenie dannymi v oblastyakh s intensivnym ispolzovaniem dannykh», 2017, 469–476

[2] Zhuravlev Yu. I., “Ob algebraicheskom podkhode k resheniyu zadach raspoznavaniya ili klassifikatsii”, Probl. kibern., 33 (1978), 5–68 | Zbl

[3] Lyutikova L. A., Shmatova E. V., “Analiz i sintez algoritmov raspoznavaniya obrazov s ispolzovaniem peremennoznachnoi logiki”, Inform. tekhnol., 22:4 (2016), 292–297 | MR

[4] Lyutikova L. A., Shmatova E. V., “Logicheskii podkhod k korrektsii rezultatov raboty $\Sigma\Pi$-neironnykh setei”, Inform. tekhnol., 24:2 (2018), 110–116

[5] Shibzukhov Z. M., “O printsipe minimizatsii empiricheskogo riska na osnove usrednyayuschikh agregiruyuschikh funktsii”, Dokl. RAN., 476:5 (2017), 495–499 | DOI | MR | Zbl

[6] Flakh P., Mashinnoe obuchenie. Nauka i isskustvo postroeniya algoritmov, kotorye izvlekayut znaniya iz dannykh, MDK Press, M., 2015