Additive problem with $k$ numbers of a special form
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the IV International Scientific Conference "Actual Problems of Applied Mathematics". Kabardino-Balkar Republic, Nalchik, Elbrus Region, May 22–26, 2018. Part II, Tome 166 (2019), pp. 10-21
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we consider an additive problem of the form $n_1+n_2+\ldots+n_k=N$ with at least two summands, where the summands satisfy the condition $n_i\in\mathbb{N}(\alpha_i, I_i)$ for $1 \le i \le k$, where $\mathbb{N}(\alpha I)=\{n\in\mathbb{N}:\{n\alpha\}\in I\}$.
Keywords:
additive problem, uniform distribution.
@article{INTO_2019_166_a1,
author = {A. A. Zhukova and A. V. Shutov},
title = {Additive problem with $k$ numbers of a special form},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {10--21},
publisher = {mathdoc},
volume = {166},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2019_166_a1/}
}
TY - JOUR AU - A. A. Zhukova AU - A. V. Shutov TI - Additive problem with $k$ numbers of a special form JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2019 SP - 10 EP - 21 VL - 166 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2019_166_a1/ LA - ru ID - INTO_2019_166_a1 ER -
%0 Journal Article %A A. A. Zhukova %A A. V. Shutov %T Additive problem with $k$ numbers of a special form %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2019 %P 10-21 %V 166 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2019_166_a1/ %G ru %F INTO_2019_166_a1
A. A. Zhukova; A. V. Shutov. Additive problem with $k$ numbers of a special form. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the IV International Scientific Conference "Actual Problems of Applied Mathematics". Kabardino-Balkar Republic, Nalchik, Elbrus Region, May 22–26, 2018. Part II, Tome 166 (2019), pp. 10-21. http://geodesic.mathdoc.fr/item/INTO_2019_166_a1/