On the rate of stabilization of solutions to the Cauchy problem for the Godunov--Sultangazin system with periodic initial data
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the IV International Scientific Conference "Actual Problems of Applied Mathematics". Kabardino-Balkar Republic, Nalchik, Elbrus Region, May 22–26, 2018. Part I, Tome 165 (2019), pp. 88-113.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we examine a one-dimensional system of equations for a discrete gas model (the Godunov–Sultangazin system). The Godunov–Sultangazin system is the Boltzmann kinetic equation for a model one-dimensional gas consisting of three groups of particles. In this model, the momentum is preserved whereas the energy is not. We prove the existence of a unique global solution to the Cauchy problem for a perturbation of the equilibrium state with periodic initial data. For the first time, we find the rate of stabilization to the equilibrium state (exponential stabilization).
Keywords: Godunov–Sultangazin system, existence theorem, weak solution, Knudsen number.
@article{INTO_2019_165_a8,
     author = {S. A. Dukhnovskii},
     title = {On the rate of stabilization of solutions to the {Cauchy} problem for the {Godunov--Sultangazin} system with periodic initial data},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {88--113},
     publisher = {mathdoc},
     volume = {165},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_165_a8/}
}
TY  - JOUR
AU  - S. A. Dukhnovskii
TI  - On the rate of stabilization of solutions to the Cauchy problem for the Godunov--Sultangazin system with periodic initial data
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 88
EP  - 113
VL  - 165
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_165_a8/
LA  - ru
ID  - INTO_2019_165_a8
ER  - 
%0 Journal Article
%A S. A. Dukhnovskii
%T On the rate of stabilization of solutions to the Cauchy problem for the Godunov--Sultangazin system with periodic initial data
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 88-113
%V 165
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_165_a8/
%G ru
%F INTO_2019_165_a8
S. A. Dukhnovskii. On the rate of stabilization of solutions to the Cauchy problem for the Godunov--Sultangazin system with periodic initial data. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the IV International Scientific Conference "Actual Problems of Applied Mathematics". Kabardino-Balkar Republic, Nalchik, Elbrus Region, May 22–26, 2018. Part I, Tome 165 (2019), pp. 88-113. http://geodesic.mathdoc.fr/item/INTO_2019_165_a8/

[1] Vasileva O. A., “Chislennoe issledovanie sistemy uravnenii Godunova—Sultangazina. Periodicheskii sluchai”, Vestn. MGSU., 2016, no. 4, 27–35

[2] Vasileva O. A., Dukhnovskii S. A., “Uslovie sekulyarnosti kineticheskoi sistemy Karlemana”, Vestn. MGSU., 2015, no. 7, 33–40

[3] Vedenyapin V. V., Kineticheskie uravneniya Boltsmana i Vlasova, Fizmatlit, M., 2001

[4] Godunov S. K., Sultangazin U. M., “O diskretnykh modelyakh kineticheskogo uravneniya Boltsmana”, Usp. mat. nauk., 26:3 (1971), 3–51 | MR | Zbl

[5] Dukhnovskii S. A., “O skorosti stabilizatsii reshenii zadachi Koshi dlya uravneniya Karlemana s periodicheskimi nachalnymi dannymi”, Vestn. Samar. gos. tekhn. un-ta. Ser. fiz.-mat. nauki., 21:1 (2017), 7–41 | DOI | Zbl

[6] Ilin O. V., “Izuchenie suschestvovaniya reshenii i ustoichivosti kineticheskoi sistemy Karlemana”, Zh. vychisl. mat. mat. fiz., 47:12 (2007), 2076–2087 | MR

[7] Radkevich E. V., “O diskretnykh kineticheskikh uravneniyakh”, Dokl. RAN., 447:4 (2012), 369–373 | Zbl

[8] Radkevich E. V., “O povedenii na bolshikh vremenakh reshenii zadachi Koshi dlya dvumernogo kineticheskogo uravneniya”, Sovr. mat. Fundam. napr., 47 (2013), 108–139

[9] Buslaev V. S., Komech A., Kopylova E. A., Stuart D., “On asymptotic stability of solitary waves in nonlinear Schrödinger equation”, Commun. Partial Differ. Equ., 33:4 (2008), 669–705 | DOI | MR | Zbl

[10] Kopylova E. A., “On long-time decay for magnetic Schrödinger and Klein–Gordon equations”, Tr. Mat. in-ta im. V. A. Steklova., 278 (2012), 129–137 | MR | Zbl

[11] Radkevich E. V., Vasil'eva O. A., Dukhnovskii S. A., “Local equilibrium of the Carleman equation”, J. Math. Sci., 207:2 (2015), 296–323 | DOI | MR | Zbl

[12] Vasil'eva O. A., Dukhnovskii S. A., Radkevich E. V., “On the nature of local equilibrium in the Carleman and Godunov–Sultangazin equations”, J. Math. Sci., 235:4 (2018), 393–453 | MR