Asymptotic equations of gas dynamics: qualitative analysis, construction of solutions, and applications
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the IV International Scientific Conference "Actual Problems of Applied Mathematics". Kabardino-Balkar Republic, Nalchik, Elbrus Region, May 22–26, 2018. Part I, Tome 165 (2019), pp. 47-62
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we propose asymptotic expansions for the velocity potential and obtain asymptotic equations of gas dynamics for irrotational isentropic flows of an ideal gas: an equation of linear theory, a nonlinear equation for supersonic flows, and a nonlinear transonic equation. We construct some exact particular solutions for the asymptotic nonlinear transonic equation, which takes into account transverse perturbations. Based on a linear asymptotic equation, we examine the dynamic stability of an elastic deformable element of a channel at a subsonic flow rate of a gas or liquid. The study of stability is carried out in a statement corresponding to small perturbations of a homogeneous flow and small deformations of an elastic element, and is based on the construction of a positive definite functional. Sufficient stability conditions are obtained.
Keywords:
aerodynamics, partial differential equation, asymptotic expansion, transonic gas flow, channel, de Laval nozzle, aerohydroelasticity, dynamic stability.
@article{INTO_2019_165_a4,
author = {P. A. Vel'misov and J. {\CYRA}. Tamarova and E. P. Sem{\cyre}nova},
title = {Asymptotic equations of gas dynamics: qualitative analysis, construction of solutions, and applications},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {47--62},
publisher = {mathdoc},
volume = {165},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2019_165_a4/}
}
TY - JOUR AU - P. A. Vel'misov AU - J. А. Tamarova AU - E. P. Semеnova TI - Asymptotic equations of gas dynamics: qualitative analysis, construction of solutions, and applications JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2019 SP - 47 EP - 62 VL - 165 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2019_165_a4/ LA - ru ID - INTO_2019_165_a4 ER -
%0 Journal Article %A P. A. Vel'misov %A J. А. Tamarova %A E. P. Semеnova %T Asymptotic equations of gas dynamics: qualitative analysis, construction of solutions, and applications %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2019 %P 47-62 %V 165 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2019_165_a4/ %G ru %F INTO_2019_165_a4
P. A. Vel'misov; J. А. Tamarova; E. P. Semеnova. Asymptotic equations of gas dynamics: qualitative analysis, construction of solutions, and applications. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the IV International Scientific Conference "Actual Problems of Applied Mathematics". Kabardino-Balkar Republic, Nalchik, Elbrus Region, May 22–26, 2018. Part I, Tome 165 (2019), pp. 47-62. http://geodesic.mathdoc.fr/item/INTO_2019_165_a4/