Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2019_163_a8, author = {M. G. Yumagulov and L. S. Ibragimova and A. S. Belova}, title = {Methods for studying the stability of linear periodic systems depending on a small parameter}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {113--126}, publisher = {mathdoc}, volume = {163}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2019_163_a8/} }
TY - JOUR AU - M. G. Yumagulov AU - L. S. Ibragimova AU - A. S. Belova TI - Methods for studying the stability of linear periodic systems depending on a small parameter JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2019 SP - 113 EP - 126 VL - 163 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2019_163_a8/ LA - ru ID - INTO_2019_163_a8 ER -
%0 Journal Article %A M. G. Yumagulov %A L. S. Ibragimova %A A. S. Belova %T Methods for studying the stability of linear periodic systems depending on a small parameter %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2019 %P 113-126 %V 163 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2019_163_a8/ %G ru %F INTO_2019_163_a8
M. G. Yumagulov; L. S. Ibragimova; A. S. Belova. Methods for studying the stability of linear periodic systems depending on a small parameter. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations, Tome 163 (2019), pp. 113-126. http://geodesic.mathdoc.fr/item/INTO_2019_163_a8/
[1] Demidenko G. V., Matveeva I. I., “Ob ustoichivosti reshenii lineinykh sistem s periodicheskimi koeffitsientami”, Sib. mat. zh., 42:2 (2001), 332–348 | MR | Zbl
[2] Ibragimova L. S., Mustafina I. Zh., Yumagulov M. G., “Asimptoticheskie formuly v zadache postroeniya oblastei giperbolichnosti i ustoichivosti dinamicheskikh sistem”, Ufim. mat. zh., 2016, no. 3, 59–81 | MR
[3] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1975
[4] Krasnoselskii M. A., Yumagulov M. G., “Metod funktsionalizatsii parametra v probleme sobstvennykh znachenii”, Dokl. RAN., 365:2 (1999), 162–164 | MR
[5] Malkin I. G., Metody Lyapunova i Puankare v teorii nelineinykh kolebanii, Editorial URSS, M., 2004 | MR
[6] Perov A. I., “Ob odnom kriterii ustoichivosti lineinykh sistem differentsialnykh uravnenii s periodicheskimi koeffitsientami”, Avtomat. telemekh., 2013, no. 2, 22–37 | Zbl
[7] Rozo M., Nelineinye kolebaniya i teoriya ustoichivosti, Nauka, M., 1971
[8] Chezari L., Asimptoticheskoe povedenie i ustoichivost reshenii obyknovennykh differentsialnykh uravnenii, Mir, M., 1964
[9] Yumagulov M. G., Ibragimova L. S., Imangulova E. S., “Glavnye asimptotiki v zadache o bifurkatsii Andronova—Khopfa i ikh prilozheniya”, Differ. uravn., 53:12 (2017), 1627–1642 | DOI | MR | Zbl
[10] Yumagulov M. G., Ibragimova L. S., Mustafina I. Zh., “Issledovanie granits oblastei ustoichivosti dvukhparametricheskikh dinamicheskikh sistem”, Avtomat. telemekh., 2017, no. 10, 74–89 | Zbl
[11] Yakubovich V. A., Starzhinskii V. M., Lineinye differentsialnye uravneniya s periodicheskimi koeffitsientami i ikh prilozheniya, Nauka, M., 1972 | MR
[12] Chiang H. D., Alberto L. F., Stability Regions of Nonlinear Dynamical Systems: Theory, Estimation, and Applications, Cambridge Univ. Press, Cambridge, 2015 | MR | Zbl
[13] Jianjun Paul Tiana, Jin Wangb, “Some results in Floquet theory, with application to periodic epidemic models”, Appl. Anal., 94:6 (2015), 1128–1152 | DOI | MR | Zbl
[14] Seyranian A. P., Mailybaev A. A., Multiparameter Stability Theory with Mechanical Applications, World Scientific, New Jersey, 2003 | MR | Zbl
[15] Traversa F. L., Di Ventra M., Bonani F., “Generalized Floquet theory: application to dynamical systems with memory and Bloch's theorem for nonlocal potentials”, Phys. Rev. Lett., 110 (2013), 170602 | DOI