Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2019_163_a7, author = {E. E. Kholodnov}, title = {On ground states and compactly supported solutions of elliptic equations with {non-Lipschitz} nonlinearities}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {108--112}, publisher = {mathdoc}, volume = {163}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2019_163_a7/} }
TY - JOUR AU - E. E. Kholodnov TI - On ground states and compactly supported solutions of elliptic equations with non-Lipschitz nonlinearities JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2019 SP - 108 EP - 112 VL - 163 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2019_163_a7/ LA - ru ID - INTO_2019_163_a7 ER -
%0 Journal Article %A E. E. Kholodnov %T On ground states and compactly supported solutions of elliptic equations with non-Lipschitz nonlinearities %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2019 %P 108-112 %V 163 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2019_163_a7/ %G ru %F INTO_2019_163_a7
E. E. Kholodnov. On ground states and compactly supported solutions of elliptic equations with non-Lipschitz nonlinearities. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations, Tome 163 (2019), pp. 108-112. http://geodesic.mathdoc.fr/item/INTO_2019_163_a7/
[1] Ilyasov Ya. Sh., Kholodnov E. E., “O globalnoi neustoichivosti reshenii giperbolicheskikh uravnenii s nelipshitsevoi nelineinostyu”, Ufim. mat. zh., 9:4 (2017), 45–54
[2] Díaz J. I., Hernández J., Il'yasov Y., “Flat solutions of some non-Lipschitz autonomous semilinear equations may be stable for $N\ge3$”, Chin. Ann. Math. Ser. B., 38:1 (2017), 345–378 | DOI | MR | Zbl
[3] Díaz J. I., Hernández J., Il'yasov Y., “On the existence of positive solutions and solutions with compact support for a spectral nonlinear elliptic problem with strong absorption”, Nonlin. Anal. Theory Meth. Appl., 119 (2015), 484–500 | DOI | MR | Zbl
[4] Il'yasov Y. S., “On critical exponent for an elliptic equation with non-Lipschitz nonlinearity”, Dynam. Syst., 2011, 698–706 | MR | Zbl
[5] Il'yasov Y. S., Egorov Y., “Höpf maximum principle violation for elliptic equations with non-Lipschitz nonlinearity”, Nonlin. Anal., 72 (2010), 3346–3355 | DOI | MR | Zbl
[6] Kaper H. G., Kwong M. K., “Free boundary problems for Emden–Fowler equations”, Differ. Integr. Equations., 3:2 (1990), 353–362 | MR | Zbl
[7] Kaper H., Kwong M. K., Li Y., “Symmetry results for reaction-diffusion equations”, Differ. Integr. Equations., 6 (1993), 1045–1056 | MR | Zbl
[8] Serrin J., Zou H., “Symmetry of ground states of quasilinear elliptic equations”, Arch. Rat. Mech. Anal., 148:4 (1999), 265–290 | DOI | MR | Zbl