Lyapunov functions and asymptotics at infinity of solutions of equations that are close to Hamiltonian equations
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations, Tome 163 (2019), pp. 96-107.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a nonlinear nonautonomous system of two ordinary differential equations with a stable fixed point and assume that the non-Hamiltonian part of the system tends to zero at infinity. We examine the asymptotic behavior of a two-parameter family of solutions that start from a neighborhood of the stable equilibrium. The proposed construction of asymptotic solutions is based on the averaging method and the transition in the original system to new dependent variables, one of which is the angle of the limit Hamiltonian system, and the other is the Lyapunov function for the complete system.
Keywords: nonlinear differential equation, asymptotics, averaging, Lyapunov function.
@article{INTO_2019_163_a6,
     author = {O. A. Sultanov},
     title = {Lyapunov functions and asymptotics at infinity of solutions of equations that are close to {Hamiltonian} equations},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {96--107},
     publisher = {mathdoc},
     volume = {163},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_163_a6/}
}
TY  - JOUR
AU  - O. A. Sultanov
TI  - Lyapunov functions and asymptotics at infinity of solutions of equations that are close to Hamiltonian equations
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 96
EP  - 107
VL  - 163
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_163_a6/
LA  - ru
ID  - INTO_2019_163_a6
ER  - 
%0 Journal Article
%A O. A. Sultanov
%T Lyapunov functions and asymptotics at infinity of solutions of equations that are close to Hamiltonian equations
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 96-107
%V 163
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_163_a6/
%G ru
%F INTO_2019_163_a6
O. A. Sultanov. Lyapunov functions and asymptotics at infinity of solutions of equations that are close to Hamiltonian equations. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations, Tome 163 (2019), pp. 96-107. http://geodesic.mathdoc.fr/item/INTO_2019_163_a6/

[1] Bogolyubov N. N., Mitropolskii Yu. A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974 | MR

[2] Bryuno A. D., Stepennaya geometriya v algebraicheskikh i differentsialnykh uravneniyakh, Nauka, M., 1998

[3] Its A. R., Kapaev A. A., Novokshenov V. Yu., Fokas A. S., Trantsendenty Penleve. Metod zadachi Rimana, RKhD, Moskva–Izhevsk, 2005

[4] Kalyakin L. A., “Asimptotika na beskonechnosti reshenii uravnenii, blizkikh k gamiltonovym”, Sovr. mat. prilozh., 53 (2008), 138–160

[5] Kalyakin L. A., “Asimptoticheskii analiz modelei avtorezonansa”, Usp. mat. nauk., 63:5 (2008), 3–72 | DOI | MR | Zbl

[6] Kalyakin L. A., “Metod usredneniya v zadachakh ob asimptotike na beskonechnosti”, Ufim. mat. zh., 1:2 (2009), 29–52 | Zbl

[7] Kalyakin L. A., “Funktsii Lyapunova v teoremakh obosnovaniya asimptotiki”, Mat. zametki., 98:5 (2015), 695–709 | DOI | MR | Zbl

[8] Kozlov V. V., Furta S. D., Asimptotiki reshenii silno nelineinykh sistem differentsialnykh uravnenii, Izd-vo MGU, M., 1996 | MR

[9] Kuznetsov A. N., “O suschestvovanii vkhodyaschikh v osobuyu tochku reshenii avtonomnoi sistemy, obladayuschei formalnym resheniem”, Funkts. anal. prilozh., 23:4 (1989), 63–74 | MR | Zbl

[10] Sultanov O. A., “Funktsii Lyapunova dlya neavtonomnykh sistem, blizkikh k gamiltonovym”, Ufim. mat. zh., 2:4 (2010), 88–98 | Zbl

[11] Sultanov O. A., “Ustoichivost zakhvata v parametricheskii avtorezonans”, Tr. Inst. mat. mekh. UrO RAN., 21:1 (2015), 220–230 | MR

[12] Fedoryuk M. V., Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1983

[13] Khapaev M. M., Asimptoticheskie metody i ustoichivost v teorii nelineinykh kolebanii, Vysshaya shkola, M., 1988

[14] Kalyakin L. A., Sultanov O. A., “Stability of autoresonance models”, Differ. Equations., 49 (2013), 267–281 | DOI | MR | Zbl