On the frequency of a nonlinear oscillator
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations, Tome 163 (2019), pp. 15-24
Cet article a éte moissonné depuis la source Math-Net.Ru
In the study of nonlinear oscillations, the question on the dependence of the frequency or the period on the energy often arises. In this paper, we find conditions under which the frequency depends on the energy monotonically. In addition, for oscillations near separatrix trajectories, an asymptotics of the period with respect to the energy is constructed.
Keywords:
nonlinear oscillations, period, frequency, asymptotics.
@article{INTO_2019_163_a1,
author = {L. A. Kalyakin},
title = {On the frequency of a nonlinear oscillator},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {15--24},
year = {2019},
volume = {163},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2019_163_a1/}
}
L. A. Kalyakin. On the frequency of a nonlinear oscillator. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations, Tome 163 (2019), pp. 15-24. http://geodesic.mathdoc.fr/item/INTO_2019_163_a1/
[1] “Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki”, Dinamicheskie sistemy–3, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 3, VINITI, M., 1985, 5–290
[2] Kalyakin L. A., “Usrednenie v modeli avtorezonansa”, Mat. zametki., 73:3 (2003), 449–452 | DOI | MR | Zbl
[3] Kalyakin L. A., “Asimptoticheskii analiz modelei avtorezonansa”, Usp. mat. nauk., 63:5 (2008), 3–72 | DOI | MR | Zbl
[4] Neishtadt A. I., “Usrednenie, prokhozhdenie cherez rezonansy i zakhvat v rezonans v dvukhchastotnykh sistemakh”, Usp. mat. nauk., 69:5 (2014), 3–80 | DOI | MR | Zbl
[5] Fedoryuk M. V., Metod perevala, Nauka, M., 1977 | MR
[6] Murdock J. A., Perturbations: theory and methods, Wiley, New York, 1991 | MR | Zbl