Voir la notice du chapitre de livre
@article{INTO_2019_163_a1,
author = {L. A. Kalyakin},
title = {On the frequency of a nonlinear oscillator},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {15--24},
year = {2019},
volume = {163},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2019_163_a1/}
}
L. A. Kalyakin. On the frequency of a nonlinear oscillator. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations, Tome 163 (2019), pp. 15-24. http://geodesic.mathdoc.fr/item/INTO_2019_163_a1/
[1] “Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki”, Dinamicheskie sistemy–3, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 3, VINITI, M., 1985, 5–290
[2] Kalyakin L. A., “Usrednenie v modeli avtorezonansa”, Mat. zametki., 73:3 (2003), 449–452 | DOI | MR | Zbl
[3] Kalyakin L. A., “Asimptoticheskii analiz modelei avtorezonansa”, Usp. mat. nauk., 63:5 (2008), 3–72 | DOI | MR | Zbl
[4] Neishtadt A. I., “Usrednenie, prokhozhdenie cherez rezonansy i zakhvat v rezonans v dvukhchastotnykh sistemakh”, Usp. mat. nauk., 69:5 (2014), 3–80 | DOI | MR | Zbl
[5] Fedoryuk M. V., Metod perevala, Nauka, M., 1977 | MR
[6] Murdock J. A., Perturbations: theory and methods, Wiley, New York, 1991 | MR | Zbl