On occurrence of resonances from multiple eigenvalues of the Schr\"odinger operator in a cylinder with scattering perturbations
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations, Tome 163 (2019), pp. 3-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the Schrödinger operator with a localized potential in a multidimensional cylinder is considered. The boundary of the cylinder is split into three parts, two of which are “sleeves” going to infinity, and the third (central) part is located between them. On the sleeves and the central part, respectively, the Neumann and Dirichlet boundary conditions are posed. We examine the situation where the distance between the sleeves increases. We assume that the same Schrödinger operator in the same cylinder endowed with the Dirichlet condition on the whole boundary has an isolated double eigenvalue. We show that for a sufficiently large distance between the sleeves, this double eigenvalue splits into a pair of resonances of the original operator. For these resonances, we explicitly obtain the first terms of their asymptotic expansions and describe the behavior of the imaginary part of the resonances.
Keywords: Schrödinger operator, perturbation of continuous spectrum, resonance, scattering perturbation.
@article{INTO_2019_163_a0,
     author = {D. I. Borisov and A. M. Golovina},
     title = {On occurrence of resonances from multiple eigenvalues of the {Schr\"odinger} operator in a cylinder with scattering perturbations},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {3--14},
     publisher = {mathdoc},
     volume = {163},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_163_a0/}
}
TY  - JOUR
AU  - D. I. Borisov
AU  - A. M. Golovina
TI  - On occurrence of resonances from multiple eigenvalues of the Schr\"odinger operator in a cylinder with scattering perturbations
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 3
EP  - 14
VL  - 163
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_163_a0/
LA  - ru
ID  - INTO_2019_163_a0
ER  - 
%0 Journal Article
%A D. I. Borisov
%A A. M. Golovina
%T On occurrence of resonances from multiple eigenvalues of the Schr\"odinger operator in a cylinder with scattering perturbations
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 3-14
%V 163
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_163_a0/
%G ru
%F INTO_2019_163_a0
D. I. Borisov; A. M. Golovina. On occurrence of resonances from multiple eigenvalues of the Schr\"odinger operator in a cylinder with scattering perturbations. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations, Tome 163 (2019), pp. 3-14. http://geodesic.mathdoc.fr/item/INTO_2019_163_a0/

[1] Borisov D. I., “Diskretnyi spektr pary nesimmetrichnykh volnovodov, soedinennykh oknom”, Mat. sb., 197:4 (2006), 3–32 | DOI | Zbl

[2] Borisov D. I., Golovina A. M., “O rezolventakh periodicheskikh operatorov s razbegayuschimisya vozmuscheniyami”, Ufim. mat. zh., 4:2 (2012), 65–74 | MR

[3] Gadylshin R. R., “O lokalnykh vozmuscheniyakh operatora Shredingera na osi”, Teor. mat. fiz., 132:1 (2002), 97–104 | DOI | MR | Zbl

[4] Golovina A. M., “Rezolventy operatorov s razbegayuschimisya vozmuscheniyami”, Mat. zametki., 91:3 (2012), 464–466 | DOI | MR | Zbl

[5] Golovina A. M., “O spektre periodicheskikh ellipticheskikh operatorov s razbegayuschimisya vozmuscheniyami v prostranstve”, Algebra i analiz., 25:5 (2013), 32–60 | MR

[6] Kondratev V. A., “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Tr. Mosk. mat. ob-va., 16 (1967), 209–292 | Zbl

[7] Filonov N., “Ob odnom neravenstve na sobstvennye chisla zadach Dirikhle i Neimana dlya operatora Laplasa”, Algebra i analiz., 16:2 (2004), 172–176 | MR

[8] Ahlrichs R., “Convergence properties of the intermolecular Force series (${1}/{R}$-expansion)”, Theor. Chem. Acta., 66:1 (1976), 7–15 | DOI

[9] Aktosun T., Klaus M., van der Mee C., “On the number of bound states for the one-dimensional Schrödinger equation”, J. Math. Phys., 39:9 (1998), 4249–4259 | DOI | MR

[10] Aventini P., Seiler R., “On the electronic spectrum of the diatomic molecular ion”, Commun. Math. Phys., 41:2 (1975), 119–134 | DOI | MR

[11] Borisov D., Exner P., Golovina A., “Tunneling resonances in systems without a classical trapping”, J. Math. Phys., 54:1 (2013), 012102 | DOI | MR | Zbl

[12] Borisov D. I., “Asymtotic behaviour of the spectrum of a waveguide with distant perturbation”, Math. Phys. Anal. Geom., 10:2 (2007), 155–196 | DOI | MR | Zbl

[13] Borisov D. I., “Distant perturbation of the Laplacian in a multi-dimensional space”, Ann. Inst. H. Poincaré., 8:7 (2007), 1371–1399 | DOI | MR | Zbl

[14] Borisov D. I., Exner P., “Exponential splitting of bound in a waveguide with a pair of distant windows”, J. Phys. A. Math. Gen., 37:10 (2004), 3411–3428 | DOI | MR | Zbl

[15] Borisov D., Exner P., “Distant perturbation asymptotics in window-coupled waveguides. I. The non-threshold case”, J. Math. Phys., 47:11 (2006), 113502 | DOI | MR | Zbl

[16] Bulla W., Gesztesy F., Renger W., Simon B., “Weakly coupled bound states in quantum waveguides”, Proc. Am. Math. Soc., 125:5 (1997), 1487–1495 | DOI | MR | Zbl

[17] Davies E. B., “The twisting trick for double well Hamiltonians”, Commun. Math. Phys., 85:3 (1982), 471–479 | DOI | MR | Zbl

[18] Golovina A. M., “On the resolvent of elliptic operators with distant perturbations in the space”, Russ. J. Math. Phys., 19:2 (2012), 182–192 | DOI | MR | Zbl

[19] Harrell E. M., “Double wells”, Commun. Math. Phys., 75:3 (1980), 239–261 | DOI | MR | Zbl

[20] Harrell E. M., Klaus M., “On the double-well problem for Dirac operators”, Ann. Inst. H. Poincaré., 38:2 (1983), 153–166 | MR | Zbl

[21] Høegh-Krohn R., Mebkhout M., “The $1/r$-expansion for the critical multiple well problem”, Commun. Math. Phys., 91:1 (1983), 65–73 | DOI | MR

[22] Klaus M., “Some remarks on double-wells in one and three dimensions”, Ann. Inst. H. Poincaré., 34:4 (1981), 405–417 | MR | Zbl

[23] Klaus M., Simon B., “Binding of Schrödinger particles through conspiracy of potential wells”, Ann. Inst. H. Poincaré. Sect. A., 30:2 (1979), 83–87 | MR

[24] Kostrykin V., Schrader R., “Cluster properties of one particle Schrödinger operators, I”, Rev. Math. Phys., 6:5 (1994), 833–853 | DOI | MR | Zbl