Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2019_163_a0, author = {D. I. Borisov and A. M. Golovina}, title = {On occurrence of resonances from multiple eigenvalues of the {Schr\"odinger} operator in a cylinder with scattering perturbations}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {3--14}, publisher = {mathdoc}, volume = {163}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2019_163_a0/} }
TY - JOUR AU - D. I. Borisov AU - A. M. Golovina TI - On occurrence of resonances from multiple eigenvalues of the Schr\"odinger operator in a cylinder with scattering perturbations JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2019 SP - 3 EP - 14 VL - 163 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2019_163_a0/ LA - ru ID - INTO_2019_163_a0 ER -
%0 Journal Article %A D. I. Borisov %A A. M. Golovina %T On occurrence of resonances from multiple eigenvalues of the Schr\"odinger operator in a cylinder with scattering perturbations %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2019 %P 3-14 %V 163 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2019_163_a0/ %G ru %F INTO_2019_163_a0
D. I. Borisov; A. M. Golovina. On occurrence of resonances from multiple eigenvalues of the Schr\"odinger operator in a cylinder with scattering perturbations. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations, Tome 163 (2019), pp. 3-14. http://geodesic.mathdoc.fr/item/INTO_2019_163_a0/
[1] Borisov D. I., “Diskretnyi spektr pary nesimmetrichnykh volnovodov, soedinennykh oknom”, Mat. sb., 197:4 (2006), 3–32 | DOI | Zbl
[2] Borisov D. I., Golovina A. M., “O rezolventakh periodicheskikh operatorov s razbegayuschimisya vozmuscheniyami”, Ufim. mat. zh., 4:2 (2012), 65–74 | MR
[3] Gadylshin R. R., “O lokalnykh vozmuscheniyakh operatora Shredingera na osi”, Teor. mat. fiz., 132:1 (2002), 97–104 | DOI | MR | Zbl
[4] Golovina A. M., “Rezolventy operatorov s razbegayuschimisya vozmuscheniyami”, Mat. zametki., 91:3 (2012), 464–466 | DOI | MR | Zbl
[5] Golovina A. M., “O spektre periodicheskikh ellipticheskikh operatorov s razbegayuschimisya vozmuscheniyami v prostranstve”, Algebra i analiz., 25:5 (2013), 32–60 | MR
[6] Kondratev V. A., “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Tr. Mosk. mat. ob-va., 16 (1967), 209–292 | Zbl
[7] Filonov N., “Ob odnom neravenstve na sobstvennye chisla zadach Dirikhle i Neimana dlya operatora Laplasa”, Algebra i analiz., 16:2 (2004), 172–176 | MR
[8] Ahlrichs R., “Convergence properties of the intermolecular Force series (${1}/{R}$-expansion)”, Theor. Chem. Acta., 66:1 (1976), 7–15 | DOI
[9] Aktosun T., Klaus M., van der Mee C., “On the number of bound states for the one-dimensional Schrödinger equation”, J. Math. Phys., 39:9 (1998), 4249–4259 | DOI | MR
[10] Aventini P., Seiler R., “On the electronic spectrum of the diatomic molecular ion”, Commun. Math. Phys., 41:2 (1975), 119–134 | DOI | MR
[11] Borisov D., Exner P., Golovina A., “Tunneling resonances in systems without a classical trapping”, J. Math. Phys., 54:1 (2013), 012102 | DOI | MR | Zbl
[12] Borisov D. I., “Asymtotic behaviour of the spectrum of a waveguide with distant perturbation”, Math. Phys. Anal. Geom., 10:2 (2007), 155–196 | DOI | MR | Zbl
[13] Borisov D. I., “Distant perturbation of the Laplacian in a multi-dimensional space”, Ann. Inst. H. Poincaré., 8:7 (2007), 1371–1399 | DOI | MR | Zbl
[14] Borisov D. I., Exner P., “Exponential splitting of bound in a waveguide with a pair of distant windows”, J. Phys. A. Math. Gen., 37:10 (2004), 3411–3428 | DOI | MR | Zbl
[15] Borisov D., Exner P., “Distant perturbation asymptotics in window-coupled waveguides. I. The non-threshold case”, J. Math. Phys., 47:11 (2006), 113502 | DOI | MR | Zbl
[16] Bulla W., Gesztesy F., Renger W., Simon B., “Weakly coupled bound states in quantum waveguides”, Proc. Am. Math. Soc., 125:5 (1997), 1487–1495 | DOI | MR | Zbl
[17] Davies E. B., “The twisting trick for double well Hamiltonians”, Commun. Math. Phys., 85:3 (1982), 471–479 | DOI | MR | Zbl
[18] Golovina A. M., “On the resolvent of elliptic operators with distant perturbations in the space”, Russ. J. Math. Phys., 19:2 (2012), 182–192 | DOI | MR | Zbl
[19] Harrell E. M., “Double wells”, Commun. Math. Phys., 75:3 (1980), 239–261 | DOI | MR | Zbl
[20] Harrell E. M., Klaus M., “On the double-well problem for Dirac operators”, Ann. Inst. H. Poincaré., 38:2 (1983), 153–166 | MR | Zbl
[21] Høegh-Krohn R., Mebkhout M., “The $1/r$-expansion for the critical multiple well problem”, Commun. Math. Phys., 91:1 (1983), 65–73 | DOI | MR
[22] Klaus M., “Some remarks on double-wells in one and three dimensions”, Ann. Inst. H. Poincaré., 34:4 (1981), 405–417 | MR | Zbl
[23] Klaus M., Simon B., “Binding of Schrödinger particles through conspiracy of potential wells”, Ann. Inst. H. Poincaré. Sect. A., 30:2 (1979), 83–87 | MR
[24] Kostrykin V., Schrader R., “Cluster properties of one particle Schrödinger operators, I”, Rev. Math. Phys., 6:5 (1994), 833–853 | DOI | MR | Zbl