Representation of functions by series of exponents in normed subspaces of $A^\infty(D)$
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Complex Analysis. Mathematical Physics, Tome 162 (2019), pp. 42-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the normalized space of functions that are analytic in a bounded convex domain and infinitely differentiable up to its boundary, with estimates of all derivatives determined by a logarithmically convex sequence of positive numbers. We prove that functions from this space are represented by series of exponents converging in a weakened norm. The main tool in the construction of systems of exponents are entire functions with a given asymptotic behavior. Also, a theorem on the joint approximation of subharmonic functions by the logarithms of the modules of entire functions is proved.
Keywords: analytic function, entire function, subharmonic function, series of exponents.
@article{INTO_2019_162_a4,
     author = {K. P. Isaev and K. V. Trounov and R. S. Yulmukhametov},
     title = {Representation of functions by series of exponents in normed subspaces of $A^\infty(D)$},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {42--56},
     publisher = {mathdoc},
     volume = {162},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_162_a4/}
}
TY  - JOUR
AU  - K. P. Isaev
AU  - K. V. Trounov
AU  - R. S. Yulmukhametov
TI  - Representation of functions by series of exponents in normed subspaces of $A^\infty(D)$
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 42
EP  - 56
VL  - 162
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_162_a4/
LA  - ru
ID  - INTO_2019_162_a4
ER  - 
%0 Journal Article
%A K. P. Isaev
%A K. V. Trounov
%A R. S. Yulmukhametov
%T Representation of functions by series of exponents in normed subspaces of $A^\infty(D)$
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 42-56
%V 162
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_162_a4/
%G ru
%F INTO_2019_162_a4
K. P. Isaev; K. V. Trounov; R. S. Yulmukhametov. Representation of functions by series of exponents in normed subspaces of $A^\infty(D)$. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Complex Analysis. Mathematical Physics, Tome 162 (2019), pp. 42-56. http://geodesic.mathdoc.fr/item/INTO_2019_162_a4/

[1] Abanin A. V., “Netrivialnye razlozheniya nulya i absolyutno predstavlyayuschie sistemy”, Mat. zametki., 57:4 (1995), 483–492 | DOI | MR

[2] Isaev K. P., Yulmukhametov R. S., “Ob otsutstvii bezuslovnykh bazisov iz eksponent v prostranstvakh Bergmana na oblastyakh, ne yavlyayuschikhsya mnogougolnikami”, Izv. RAN. Ser. mat., 71:6 (2007), 69–90 | DOI | MR | Zbl

[3] Isaev K. P., “Bazisy Rissa iz eksponent v prostranstvakh Bergmana na vypuklykh mnogougolnikakh”, Ufim. mat. zh., 2:1 (2010), 71–86 | Zbl

[4] Isaev K. P., Yulmukhametov R. S., “Bezuslovnye bazisy iz vosproizvodyaschikh yader v gilbertovykh prostranstvakh tselykh funktsii”, Ufim. mat. zh., 5:3 (2013), 67–77 | MR

[5] Isaev K. P., Trunov K. V., Yulmukhametov R. S., “Predstavlenie ryadami eksponent funktsii v lokalno vypuklykh podprostranstvakh $A^\infty (D)$”, Ufim. mat. zh., 9:3 (2017), 50–62 | MR

[6] Isaev K. P., “Predstavlyayuschie sistemy eksponent v prostranstvakh analiticheskikh funktsii”, Itogi nauki i tekhn. Ser. Sovr. mat. prilozh. Tematich. obzory, 161, 2019, 3–64

[7] Levin B. Ya., Lyubarskii Yu. I., “Interpolyatsiya tselymi funktsiyami spetsialnykh klassov i svyazannye s neyu razlozheniya v ryady eksponent”, Izv. AN SSSR. Ser. mat., 39:3 (1975), 657–702 | MR | Zbl

[8] Leontev A. F., Ryady eksponent, Nauka, M., 1976 | MR

[9] Lyubarskii Yu. I., “Ryady eksponent v prostranstve Smirnova i interpolyatsiya tselymi funktsiyami spetsialnykh klassov”, Izv. AN SSSR. Ser. mat., 52:3 (1988), 559–580

[10] Mandelbroit C. F., Primykayuschie ryady. Regulyarizatsiya posledovatelnostei. Primeneniya, IL, M., 1955

[11] Napalkov V. V., “Prostranstva analiticheskikh funktsii zadannogo rosta vblizi granitsy”, Izv. AN SSSR. Ser. mat., 51:2 (1987), 287–305 | MR | Zbl

[12] Yulmukhametov R. S., “Approksimatsiya subgarmonicheskikh funktsii”, Anal. Math., 11:3 (1985), 257–282 | DOI | MR | Zbl

[13] Yulmukhametov R. S., “Kvazianaliticheskie klassy funktsii v vypuklykh oblastyakh”, Mat. sb., 130 (172):4 (8) (1986), 500–519