Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2019_162_a3, author = {A. V. Zhiber and N. M. Tsirelman}, title = {Determining temperature fields in a spatially inhomogeneous nonlinear medium}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {34--41}, publisher = {mathdoc}, volume = {162}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2019_162_a3/} }
TY - JOUR AU - A. V. Zhiber AU - N. M. Tsirelman TI - Determining temperature fields in a spatially inhomogeneous nonlinear medium JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2019 SP - 34 EP - 41 VL - 162 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2019_162_a3/ LA - ru ID - INTO_2019_162_a3 ER -
%0 Journal Article %A A. V. Zhiber %A N. M. Tsirelman %T Determining temperature fields in a spatially inhomogeneous nonlinear medium %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2019 %P 34-41 %V 162 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2019_162_a3/ %G ru %F INTO_2019_162_a3
A. V. Zhiber; N. M. Tsirelman. Determining temperature fields in a spatially inhomogeneous nonlinear medium. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Complex Analysis. Mathematical Physics, Tome 162 (2019), pp. 34-41. http://geodesic.mathdoc.fr/item/INTO_2019_162_a3/
[1] Zhiber A. V., “Differentsialnye podstanovki v zadachakh so svobodnymi granitsami”, Asimptoticheskie metody reshenii differentsialnykh uravnenii, IMVTs UrO RAN, Ufa, 1992, 27–45
[2] Zhiber A. V., Tsirelman N. M., “Tochnoe reshenie zadachi stefanovskogo tipa dlya tverdogo vodoroda”, Inzh.-fiz. zh., 54:51 (1989), 144–145
[3] Zhiber A. V., Tsirelman N. M., “Tochnye resheniya zadachi dinamiki adsorbtsii-desorbtsii s nelineinoi izotermoi sorbtsii”, Izv. AN SSSR. Mekh. zhidk. gaza., 1989, no. 5, 107–112 | MR | Zbl
[4] Kozdoba L. A., Metody resheniya nelineinykh zadach teploprovodnosti, Nauka, M., 1975
[5] Lykov A. V., “Metody resheniya nelineinykh uravnenii nestatsionarnoi teploprovodnosti. Obzor”, Izv. AN SSSR. Energetika i transport., 1970, no. 5, 109–184
[6] Meiermanov A. M., Zadacha Stefana, Nauka, Novosibirsk, 1986 | MR
[7] Pukhnachev V. V., Shmarev S. I., “Issledovanie kvazilineinykh uravnenii metodom lagranzhevykh koordinat”, Funktsionalnye i chislennye metody matematicheskoi fiziki, Naukova dumka, Kiev, 1988, 181–185
[8] Rubinshtein L. N., Problema Stefana, Zvaizgne, Riga, 1967 | MR
[9] Svinolupov S. I., Evolyutsionnye uravneniya vtorogo poryadka, 40:5 (1985), 263–264, Usp. mat. nauk. | MR | Zbl
[10] Fridman A., Uravneniya s chastichnymi proizvodnymi parabolicheskogo tipa, Mir, M., 1968
[11] Khabirov S. V., Problema Beklunda dlya evolyutsionnykh uravnenii vtorogo poryadka, Preprint Bashkir. filiala AN SSSR, Ufa, 1986
[12] Bluman G., Kumei S., “On the remarkable nonlinear diffusion equation”, J. Math. Phys., 21:5 (1980), 1019–1023 | DOI | MR | Zbl
[13] Rosen G., “Method for the exact solution of a nonlinear diffusion-convection equation”, Phys. Rev. Lett., 49:25 (1982), 1844–1847 | DOI | MR
[14] Rosen G., “Nonlinear heat conduction in solid $H_2$”, Phys. Rev. B., 19:19 (1979), 2398–2399 | DOI
[15] Sokolov V. V., Svinolupov S J., On the generation of nonlinear integrable evolution equations from linear second order equation, JENA preprint N/88/33, Friedrich-Schiller Universität | MR