Determining temperature fields in a spatially inhomogeneous nonlinear medium
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Complex Analysis. Mathematical Physics, Tome 162 (2019), pp. 34-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method of determining temperature fields in a spatially inhomogeneous medium with temperature-dependent thermophysical properties of the material is shown. For this purpose, point and nonlocal transformations of the nonstationary heat conduction equation are used. Examples of applying the theory for various boundary conditions in the spherical symmetric case are given.
Keywords: inhomogeneity, nonlinearity, spherical symmetry, hollow ball, boundary conditions.
Mots-clés : point and nonlocal transformations
@article{INTO_2019_162_a3,
     author = {A. V. Zhiber and N. M. Tsirelman},
     title = {Determining temperature fields in a spatially inhomogeneous nonlinear medium},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {34--41},
     publisher = {mathdoc},
     volume = {162},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_162_a3/}
}
TY  - JOUR
AU  - A. V. Zhiber
AU  - N. M. Tsirelman
TI  - Determining temperature fields in a spatially inhomogeneous nonlinear medium
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 34
EP  - 41
VL  - 162
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_162_a3/
LA  - ru
ID  - INTO_2019_162_a3
ER  - 
%0 Journal Article
%A A. V. Zhiber
%A N. M. Tsirelman
%T Determining temperature fields in a spatially inhomogeneous nonlinear medium
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 34-41
%V 162
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_162_a3/
%G ru
%F INTO_2019_162_a3
A. V. Zhiber; N. M. Tsirelman. Determining temperature fields in a spatially inhomogeneous nonlinear medium. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Complex Analysis. Mathematical Physics, Tome 162 (2019), pp. 34-41. http://geodesic.mathdoc.fr/item/INTO_2019_162_a3/

[1] Zhiber A. V., “Differentsialnye podstanovki v zadachakh so svobodnymi granitsami”, Asimptoticheskie metody reshenii differentsialnykh uravnenii, IMVTs UrO RAN, Ufa, 1992, 27–45

[2] Zhiber A. V., Tsirelman N. M., “Tochnoe reshenie zadachi stefanovskogo tipa dlya tverdogo vodoroda”, Inzh.-fiz. zh., 54:51 (1989), 144–145

[3] Zhiber A. V., Tsirelman N. M., “Tochnye resheniya zadachi dinamiki adsorbtsii-desorbtsii s nelineinoi izotermoi sorbtsii”, Izv. AN SSSR. Mekh. zhidk. gaza., 1989, no. 5, 107–112 | MR | Zbl

[4] Kozdoba L. A., Metody resheniya nelineinykh zadach teploprovodnosti, Nauka, M., 1975

[5] Lykov A. V., “Metody resheniya nelineinykh uravnenii nestatsionarnoi teploprovodnosti. Obzor”, Izv. AN SSSR. Energetika i transport., 1970, no. 5, 109–184

[6] Meiermanov A. M., Zadacha Stefana, Nauka, Novosibirsk, 1986 | MR

[7] Pukhnachev V. V., Shmarev S. I., “Issledovanie kvazilineinykh uravnenii metodom lagranzhevykh koordinat”, Funktsionalnye i chislennye metody matematicheskoi fiziki, Naukova dumka, Kiev, 1988, 181–185

[8] Rubinshtein L. N., Problema Stefana, Zvaizgne, Riga, 1967 | MR

[9] Svinolupov S. I., Evolyutsionnye uravneniya vtorogo poryadka, 40:5 (1985), 263–264, Usp. mat. nauk. | MR | Zbl

[10] Fridman A., Uravneniya s chastichnymi proizvodnymi parabolicheskogo tipa, Mir, M., 1968

[11] Khabirov S. V., Problema Beklunda dlya evolyutsionnykh uravnenii vtorogo poryadka, Preprint Bashkir. filiala AN SSSR, Ufa, 1986

[12] Bluman G., Kumei S., “On the remarkable nonlinear diffusion equation”, J. Math. Phys., 21:5 (1980), 1019–1023 | DOI | MR | Zbl

[13] Rosen G., “Method for the exact solution of a nonlinear diffusion-convection equation”, Phys. Rev. Lett., 49:25 (1982), 1844–1847 | DOI | MR

[14] Rosen G., “Nonlinear heat conduction in solid $H_2$”, Phys. Rev. B., 19:19 (1979), 2398–2399 | DOI

[15] Sokolov V. V., Svinolupov S J., On the generation of nonlinear integrable evolution equations from linear second order equation, JENA preprint N/88/33, Friedrich-Schiller Universität | MR