Behavior of coefficients of series of exponents of finite order near the boundary
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Complex Analysis. Mathematical Physics, Tome 162 (2019), pp. 15-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a bounded convex domain with a smooth boundary in which a given system of exponents is not complete. For a class of analytic functions in $G$ that can be represented in $G$ by a series of exponents, we examine the behavior of coefficients of the series expansion in terms of the growth order near the boundary $\partial G$. We establish two-sided estimates for the order through characteristics depending only on the indices of the series of exponents and the supporting function of the domain (these estimates are strong). As a consequence, we obtain a formula for calculating the growth order through the coefficients.
Keywords: series of exponents, domain with smooth boundary, behavior near the boundary, order, $R$-order.
@article{INTO_2019_162_a1,
     author = {A. M. Gaisin and G. A. Gaisina},
     title = {Behavior of coefficients of series of exponents of finite order near the boundary},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {15--24},
     publisher = {mathdoc},
     volume = {162},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_162_a1/}
}
TY  - JOUR
AU  - A. M. Gaisin
AU  - G. A. Gaisina
TI  - Behavior of coefficients of series of exponents of finite order near the boundary
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 15
EP  - 24
VL  - 162
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_162_a1/
LA  - ru
ID  - INTO_2019_162_a1
ER  - 
%0 Journal Article
%A A. M. Gaisin
%A G. A. Gaisina
%T Behavior of coefficients of series of exponents of finite order near the boundary
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 15-24
%V 162
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_162_a1/
%G ru
%F INTO_2019_162_a1
A. M. Gaisin; G. A. Gaisina. Behavior of coefficients of series of exponents of finite order near the boundary. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Complex Analysis. Mathematical Physics, Tome 162 (2019), pp. 15-24. http://geodesic.mathdoc.fr/item/INTO_2019_162_a1/

[1] Gaisin A. M., Issledovaniya po teorii approksimatsii funktsii, OFM BFAN SSSR, Ufa, 1981

[2] Gaisin A. M., “Povedenie summy ryada eksponent vblizi granitsy oblasti regulyarnosti”, Mat. zametki., 48:3 (1990), 45–53 | MR | Zbl

[3] Gaisina G. A., “Ob odnom obobschenii formuly N. V. Govorova—Mak-Leina—M. N. Sheremety dlya vychisleniya poryadka”, Vestn. Bashkir. un-ta., 21:3 (2016), 556–559

[4] Leontev A. F., Ryady eksponent, Nauka, M., 1976 | MR

[5] Leontev A. F., “Ryady eksponent dlya funktsii s opredelennym rostom vblizi granitsy”, Izv. AN SSSR. Ser. mat., 44:6 (1980), 1308–1328 | MR | Zbl

[6] Leontev A. F., Tselye funktsii. Ryady eksponent, Nauka, M., 1983 | MR

[7] Kheiman U., Meromorfnye funktsii, Mir, M., 1966

[8] Shabat B. V., Vvedenie v kompleksnyi analiz, v. I, Nauka, M., 1976

[9] Yulmukhametov R. S., “Prostranstvo analiticheskikh funktsii, imeyuschikh zadannyi rost vblizi granitsy”, Mat. zametki., 32:1 (1982), 41–57 | MR | Zbl