Representing exponential systems in spaces of analytical functions
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Complex Analysis. Entire Functions and Their Applications, Tome 161 (2019), pp. 3-64

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to representing exponential systems in various subspaces of the space $H(D)$ of functions that are analytical in a bounded convex domain $D$. We consider two kinds of such subspaces: uniformly weighted spaces $H(D,\varphi)$ and spaces of the type of Carleman classes $H(D,\mathcal M)$.
Keywords: analytical function, entire function, exponential series, sufficient set.
@article{INTO_2019_161_a0,
     author = {K. P. Isaev},
     title = {Representing exponential systems in spaces of analytical functions},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {3--64},
     publisher = {mathdoc},
     volume = {161},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_161_a0/}
}
TY  - JOUR
AU  - K. P. Isaev
TI  - Representing exponential systems in spaces of analytical functions
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 3
EP  - 64
VL  - 161
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_161_a0/
LA  - ru
ID  - INTO_2019_161_a0
ER  - 
%0 Journal Article
%A K. P. Isaev
%T Representing exponential systems in spaces of analytical functions
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 3-64
%V 161
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_161_a0/
%G ru
%F INTO_2019_161_a0
K. P. Isaev. Representing exponential systems in spaces of analytical functions. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Complex Analysis. Entire Functions and Their Applications, Tome 161 (2019), pp. 3-64. http://geodesic.mathdoc.fr/item/INTO_2019_161_a0/