Representing exponential systems in spaces of analytical functions
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Complex Analysis. Entire Functions and Their Applications, Tome 161 (2019), pp. 3-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to representing exponential systems in various subspaces of the space $H(D)$ of functions that are analytical in a bounded convex domain $D$. We consider two kinds of such subspaces: uniformly weighted spaces $H(D,\varphi)$ and spaces of the type of Carleman classes $H(D,\mathcal M)$.
Keywords: analytical function, entire function, exponential series, sufficient set.
@article{INTO_2019_161_a0,
     author = {K. P. Isaev},
     title = {Representing exponential systems in spaces of analytical functions},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {3--64},
     publisher = {mathdoc},
     volume = {161},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_161_a0/}
}
TY  - JOUR
AU  - K. P. Isaev
TI  - Representing exponential systems in spaces of analytical functions
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 3
EP  - 64
VL  - 161
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_161_a0/
LA  - ru
ID  - INTO_2019_161_a0
ER  - 
%0 Journal Article
%A K. P. Isaev
%T Representing exponential systems in spaces of analytical functions
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 3-64
%V 161
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_161_a0/
%G ru
%F INTO_2019_161_a0
K. P. Isaev. Representing exponential systems in spaces of analytical functions. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Complex Analysis. Entire Functions and Their Applications, Tome 161 (2019), pp. 3-64. http://geodesic.mathdoc.fr/item/INTO_2019_161_a0/

[1] Abanin A. V., Nalbandyan Yu. S., “Absolyutno predstavlyayuschie sistemy eksponent minimalnogo tipa v prostranstvakh funktsii s zadannym rostom vblizi granitsy”, Izv. vuzov. Mat., 1993, no. 10, 73–76 | MR | Zbl

[2] Abanin A. V., Varziev V. A., “Dostatochnye mnozhestva v vesovykh prostranstvakh Freshe tselykh funktsii”, Sib. mat. zh., 54:4 (2013), 725–741 | MR | Zbl

[3] Abuzyarova N. F., Yulmukhametov R. S., “Sopryazhennye prostranstva k vesovym prostranstvam analiticheskikh funktsii”, Sib. mat. zh., 42:1 (2001), 3–17 | MR | Zbl

[4] Azarin V. S., “O luchakh vpolne regulyarnogo rosta tseloi funktsii”, Mat. sb., 79 (121):4 (8) (1969), 464–476

[5] Bashmakov R. A., Isaev K. P., Yulmukhametov R. S., “Predstavlyayuschie sistemy eksponent v vesovykh podprostranstvakh $H(D)$”, Itogi nauki i tekhn. Sovr. mat. prilozh. Temat. obzory, 153, 2018, 13–28

[6] Burago Yu. D., Zalgaller V. A., Geometricheskie neravenstva, Nauka, L., 1980 | MR

[7] Isaev K. P., “Bazisy Rissa iz eksponent v prostranstvakh Bergmana na vypuklykh mnogougolnikakh”, Ufim. mat. zh., 2:1 (2010), 71–86 | Zbl

[8] Isaev K. P., Trunov K. V., Yulmukhametov R. S., “Predstavlenie ryadami eksponent funktsii v lokalno vypuklykh podprostranstvakh $A^\infty (D)$”, Ufim. mat. zh., 9:3 (2017), 50–62 | MR

[9] Isaev K. P., Yulmukhametov R. S., “Preobrazovaniya Laplasa funktsionalov na prostranstvakh Bergmana”, Izv. RAN. Ser. mat., 68:1 (2004), 5–42 | DOI | MR | Zbl

[10] Isaev K. P., Yulmukhametov R. S., “Ob otsutstvii bezuslovnykh bazisov iz eksponent v prostranstvakh Bergmana na oblastyakh, ne yavlyayuschikhsya mnogougolnikami”, Izv. RAN. Ser. mat., 71:6 (2007), 69–90 | DOI | MR | Zbl

[11] Isaev K. P., Yulmukhametov R. S., “Bezuslovnye bazisy iz vosproizvodyaschikh yader v gilbertovykh prostranstvakh tselykh funktsii”, Ufim. mat. zh., 5:3 (2013), 67–77 | MR

[12] Korobeinik Yu. F., “Predstavlyayuschie sistemy”, Usp. mat. nauk, 36:1 (217) (1981), 73–126 | MR | Zbl

[13] Levin B. Ya., Lyubarskii Yu. I., “Interpolyatsiya tselymi funktsiyami spetsialnykh klassov i svyazannye s neyu razlozheniya v ryady eksponent”, Izv. AN SSSR. Ser. mat., 39:3 (1975), 657–702 | MR | Zbl

[14] Leontev A. F., Ryady eksponent, Nauka, M., 1976 | MR

[15] Leontev A. F., “Ryady eksponent dlya funktsii s opredelennym rostom vblizi granitsy”, Izv. AN SSSR. Ser. mat., 44:6 (1980), 1308–1328 | MR | Zbl

[16] Lutsenko V. I., Yulmukhametov R. S., “Obobschenie teoremy Vinera—Peli na funktsionaly v prostranstvakh Smirnova”, Tr. Mat. in-ta im. V. A. Steklova RAN, 200, 1993, 271–280 | MR

[17] Lyubarskii Yu. I., “Ryady eksponent v prostranstve Smirnova i interpolyatsiya tselymi funktsiyami spetsialnykh klassov”, Izv. AN SSSR. Ser. mat., 52:3 (1988), 559–580

[18] Lyubarskii Yu. I., “Teorema Vinera—Peli dlya vypuklykh mnozhestv”, Izv. AN ArmSSR. Mat., 23:2 (1988), 162–172

[19] Napalkov V. V., “O sravnenii topologii v nekotorykh prostranstvakh tselykh funktsii”, Dokl. AN SSSR, 264:4 (1982), 827–830 | MR | Zbl

[20] Napalkov V. V., “Prostranstva analiticheskikh funktsii zadannogo rosta vblizi granitsy”, Izv. AN SSSR. Ser. mat., 51:2 (1987), 287–305 | MR | Zbl

[21] Sebashtyan-i-Silva Zh., “O nekotorykh klassakh lokalno vypuklykh prostranstv, vazhnykh v prilozheniyakh”, Matematika, 1:1 (1957), 60–77

[22] Khermander L., Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, v. 1, Teoriya raspredelenii i analiz Fure, Mir, M., 1986

[23] Khermander L., Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, v. 2, Differentsialnye operatory s postoyannymi koeffitsientami, Mir, M., 1986

[24] Yulmukhametov R. S., “Prostranstvo analiticheskikh funktsii, imeyuschikh zadannyi rost vblizi granitsy”, Mat. zametki, 32:1 (1982), 41–57 | MR | Zbl

[25] Yulmukhametov R. S., “Priblizhenie subgarmonicheskikh funktsii”, Mat. sb., 124 (166):3 (7) (1984), 393–415 | MR | Zbl

[26] Yulmukhametov R. S., “Approksimatsiya subgarmonicheskikh funktsii”, Anal. Math., 11:3 (1985), 257–282 | DOI | MR | Zbl

[27] Yulmukhametov R. S., “Kvazianaliticheskie klassy funktsii v vypuklykh oblastyakh”, Mat. sb., 130 (172):4 (8) (1986), 500–519

[28] Ehrenpreis L., Fourier Analysis. Several Complex Variables, Wiley, New York, 1970 | MR | Zbl