Boundary displacement control for the oscillation process with boundary conditions of damping type for a time less than critical
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference on Mathematical Modelling in Applied Sciences ICMMAS-17, St. Petersburg Polytechnic University, July 24-28, 2017, Tome 160 (2019), pp. 74-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the problem of boundary control of string oscillations, which is carried out over a period of time less than the critical time. The control is performed by a displacement of one end of the string, whereas at the other end a uniform boundary condition with oblique derivative is given, and the direction of this derivative does not coincide with characteristics. The classical statement of the problem is considered. Necessary and sufficient conditions for the existence of a unique control are found and the control itself is obtained in an explicit analytical form.
Keywords: wave equation, displacement control, time less than critical, boundary conditions with oblique derivative.
@article{INTO_2019_160_a8,
     author = {E. I. Moiseev and A. A. Kholomeyeva and A. A. Frolov},
     title = {Boundary displacement control for the oscillation process with boundary conditions of damping type for a time less than critical},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {74--84},
     publisher = {mathdoc},
     volume = {160},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_160_a8/}
}
TY  - JOUR
AU  - E. I. Moiseev
AU  - A. A. Kholomeyeva
AU  - A. A. Frolov
TI  - Boundary displacement control for the oscillation process with boundary conditions of damping type for a time less than critical
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 74
EP  - 84
VL  - 160
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_160_a8/
LA  - ru
ID  - INTO_2019_160_a8
ER  - 
%0 Journal Article
%A E. I. Moiseev
%A A. A. Kholomeyeva
%A A. A. Frolov
%T Boundary displacement control for the oscillation process with boundary conditions of damping type for a time less than critical
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 74-84
%V 160
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_160_a8/
%G ru
%F INTO_2019_160_a8
E. I. Moiseev; A. A. Kholomeyeva; A. A. Frolov. Boundary displacement control for the oscillation process with boundary conditions of damping type for a time less than critical. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference on Mathematical Modelling in Applied Sciences ICMMAS-17, St. Petersburg Polytechnic University, July 24-28, 2017, Tome 160 (2019), pp. 74-84. http://geodesic.mathdoc.fr/item/INTO_2019_160_a8/

[1] Ilin V. A., “Granichnoe upravlenie protsessom kolebanii na odnom kontse pri zakreplennom vtorom kontse v terminakh obobschennogo resheniya volnovogo uravneniya s konechnoi energiei”, Differ. uravn., 36:12 (2000), 1670–1686 | MR | Zbl

[2] Ilin V. A., Moiseev E. I., “Optimalnoe granichnoe upravlenie uprugoi siloi na odnom kontse struny pri svobodnom vtorom ee kontse”, Differ. uravn., 41:1 (2005), 105–115 | MR | Zbl

[3] Ilin V. A., Moiseev E. I., “Optimizatsiya granichnykh upravlenii kolebaniyami struny”, Usp. mat. nauk, 60:6 (366) (2005), 89–114 | DOI | MR | Zbl

[4] Ilin V. A., Tikhomirov V. V., “Volnovoe uravnenie s granichnym upravleniem na dvukh kontsakh i zadacha o polnom uspokoenii kolebatelnogo protsessa”, Differ. uravn., 35:5 (1999), 692–704 | MR | Zbl

[5] Kozlova E. A., “Zadacha granichnogo upravleniya dlya telegrafnogo uravneniya”, Vestn. SGTU, 2:27 (2012), 174–177 | Zbl

[6] Korzyuk V. I., Kozlovskaya I. S., “Dvukhtochechnaya granichnaya zadacha dlya uravneniya kolebaniya struny s zadannoi skorostyu v nekotoryi moment vremeni. I”, Tr. In-ta mat. NAN Belarusi, 18:2 (2010), 22–35 | Zbl

[7] Korzyuk V. I., Kozlovskaya I. S., “Dvukhtochechnaya granichnaya zadacha dlya uravneniya kolebaniya struny s zadannoi skorostyu v nekotoryi moment vremeni. II”, Tr. In-ta mat. NAN Belarusi, 19:1 (2011), 62–70 | MR | Zbl

[8] Korzyuk V. I., Cheb E. S., Shirma M. S., “Reshenie pervoi smeshannoi zadachi dlya volnovogo uravneniya metodom kharakteristik”, Tr. In-ta mat. NAN Belarusi, 17:2 (2009), 23–34 | Zbl

[9] Moiseev E. I., Kholomeeva A. A., “Razreshimost smeshannoi zadachi dlya volnovogo uravneniya s dinamicheskim granichnym usloviem”, Differ. uravn., 48 (2012), 1412–1417 | MR | Zbl

[10] Moiseev E. I., Kholomeeva A. A., “Optimalnoe granichnoe upravlenie smescheniem na odnom kontse struny pri nalichii soprotivleniya sredy na drugom kontse”, Differ. uravn., 49:10 (2013), 1350–1355 | MR | Zbl

[11] Revo P. A., Chabakauri G. D., “Granichnoe upravlenie protsessom kolebanii na odnom kontse pri svobodnom vtorom kontse v terminakh obobschennogo resheniya volnovogo uravneniya s konechnoi energiei”, Differ. uravn., 37:8 (2001), 1082–1095 | MR | Zbl

[12] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Nauka, M., 1977 | MR

[13] Bresch-Pietri D., Krstic M., “Output-feedback adaptive control of a wave PDE with boundary anti-damping”, Automatica, 50:5 (2014), 1407–1415 | DOI | MR | Zbl

[14] Smyshlyaev A., Krstic M. Bao-Zhu Guo, Balogh A., “Output-feedback stabilization of an unstable wave equation”, Automatica, 44:1 (2014), 63–74 | MR