Dirichlet problems for functions that are harmonic on a two-dimensional net
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference on Mathematical Modelling in Applied Sciences ICMMAS-17, St. Petersburg Polytechnic University, July 24-28, 2017, Tome 160 (2019), pp. 42-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Dirichlet problem for harmonic functions on a two-dimensional complex of a special type is considered. It is proved that this problem is a Fredholm problem in the Hölder class and its index is zero.
Keywords: two-dimensional complex, Fredholm property, index, Hölder space, harmonic function.
@article{INTO_2019_160_a5,
     author = {L. A. Kovaleva and A. P. Soldatov},
     title = {Dirichlet problems for functions that are harmonic on a two-dimensional net},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {42--48},
     publisher = {mathdoc},
     volume = {160},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_160_a5/}
}
TY  - JOUR
AU  - L. A. Kovaleva
AU  - A. P. Soldatov
TI  - Dirichlet problems for functions that are harmonic on a two-dimensional net
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 42
EP  - 48
VL  - 160
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_160_a5/
LA  - ru
ID  - INTO_2019_160_a5
ER  - 
%0 Journal Article
%A L. A. Kovaleva
%A A. P. Soldatov
%T Dirichlet problems for functions that are harmonic on a two-dimensional net
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 42-48
%V 160
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_160_a5/
%G ru
%F INTO_2019_160_a5
L. A. Kovaleva; A. P. Soldatov. Dirichlet problems for functions that are harmonic on a two-dimensional net. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference on Mathematical Modelling in Applied Sciences ICMMAS-17, St. Petersburg Polytechnic University, July 24-28, 2017, Tome 160 (2019), pp. 42-48. http://geodesic.mathdoc.fr/item/INTO_2019_160_a5/

[1] Kovaleva L. A., Soldatov A. P., “Zadacha Dirikhle na dvumernykh stratifitsirovannykh mnozhestvakh”, Izv. RAN. Ser. mat., 79:1 (2015), 77–114 | DOI | MR | Zbl