Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2019_160_a3, author = {S. O. Gladkov and S. B. Bogdanova}, title = {On a class of planar geometrical curves with constant reaction forces acting to particles moving along them}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {28--31}, publisher = {mathdoc}, volume = {160}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2019_160_a3/} }
TY - JOUR AU - S. O. Gladkov AU - S. B. Bogdanova TI - On a class of planar geometrical curves with constant reaction forces acting to particles moving along them JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2019 SP - 28 EP - 31 VL - 160 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2019_160_a3/ LA - ru ID - INTO_2019_160_a3 ER -
%0 Journal Article %A S. O. Gladkov %A S. B. Bogdanova %T On a class of planar geometrical curves with constant reaction forces acting to particles moving along them %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2019 %P 28-31 %V 160 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2019_160_a3/ %G ru %F INTO_2019_160_a3
S. O. Gladkov; S. B. Bogdanova. On a class of planar geometrical curves with constant reaction forces acting to particles moving along them. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference on Mathematical Modelling in Applied Sciences ICMMAS-17, St. Petersburg Polytechnic University, July 24-28, 2017, Tome 160 (2019), pp. 28-31. http://geodesic.mathdoc.fr/item/INTO_2019_160_a3/
[1] Gladkov S. O., Sbornik zadach po teoreticheskoi i matematicheskoi fizike, Fizmatlit, M., 2010
[2] Gladkov S. O., “O traektorii dvizheniya tela, vkhodyaschego v zhidkost pod proizvolnym uglom”, Uch. zap. fiz. f-ta MGU, 2016, no. 4, 164002-1-5
[3] Gladkov S. O., Bogdanova S. B., “Geometricheskii fazovyi perekhod v zadache o brakhistokhrone”, Uch. zap. fiz. f-ta MGU, 2016, no. 1, 161101-1-5
[4] Gladkov S. O., Bogdanova S. B., “Obobschennye dinamicheskie uravneniya ploskogo krivolineinogo dvizheniya materialnogo tela po zhelobu s uchetom sil treniya, i ikh chislennyi analiz v nekotorykh chastnykh sluchayakh”, Uch. zap. fiz. f-ta MGU, 2017, no. 1, 171101-1-5
[5] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, v. 2, Nauka, M., 1965
[6] Elsgolts L. E., Differentsialnye uravneniya i variatsionnoe ischislenie, Nauka, M., 1969