Operators and equations: discrete and continuous
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference on Mathematical Modelling in Applied Sciences ICMMAS-17, St. Petersburg Polytechnic University, July 24-28, 2017, Tome 160 (2019), pp. 18-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider discrete pseudo-differential equations with elliptic symbols and corresponding discrete boundary-value problems in special canonical domains of multidimensional spaces. The solvability of such equations and boundary-value problems in discrete analogs of Sobolev–Slobodetsky spaces is examined.
Keywords: discrete pseudo-differential operator, discrete boundary-value problem, discrete equation, solvability.
Mots-clés : elliptic symbol
@article{INTO_2019_160_a2,
     author = {V. B. Vasil'ev (Vasilyev)},
     title = {Operators and equations: discrete and continuous},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {18--27},
     publisher = {mathdoc},
     volume = {160},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_160_a2/}
}
TY  - JOUR
AU  - V. B. Vasil'ev (Vasilyev)
TI  - Operators and equations: discrete and continuous
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 18
EP  - 27
VL  - 160
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_160_a2/
LA  - ru
ID  - INTO_2019_160_a2
ER  - 
%0 Journal Article
%A V. B. Vasil'ev (Vasilyev)
%T Operators and equations: discrete and continuous
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 18-27
%V 160
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_160_a2/
%G ru
%F INTO_2019_160_a2
V. B. Vasil'ev (Vasilyev). Operators and equations: discrete and continuous. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference on Mathematical Modelling in Applied Sciences ICMMAS-17, St. Petersburg Polytechnic University, July 24-28, 2017, Tome 160 (2019), pp. 18-27. http://geodesic.mathdoc.fr/item/INTO_2019_160_a2/

[1] Bokhner S., Martin U. T., Funktsii mnogikh kompleksnykh peremennykh, IL, M., 1951

[2] Vasilev V. B., Multiplikatory integralov Fure, psevdodifferentsialnye uravneniya, volnovaya faktorizatsiya, kraevye zadachi, URSS, M., 2010

[3] Vladimirov V. S., Metody teorii funktsii mnogikh kompleksnykh peremennykh, Nauka, M., 1964

[4] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1971 | MR

[5] Rempel Sh., Shultse B.-V., Teoriya indeksa ellipticheskikh kraevykh zadach, Mir, M., 1986

[6] Ryabenkii V. S., Metod raznostnykh potentsialov dlya nekotorykh zadach mekhaniki sploshnykh sred, Nauka, M., 1987

[7] Teilor M., Psevdodifferentsialnye operatory, Mir, M., 1985

[8] Trev F., Vvedenie v teoriyu psevdodifferentsialnykh operatorov i integralnykh operatorov Fure, v. 1, 2, Mir, M., 1984 | Zbl

[9] Frank L. S., “Prostranstva setochnykh funktsii”, Mat. sb., 86:2 (1971), 187–233 | Zbl

[10] Khërmander L., Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, v. 1–4, Mir, M., 1986–1988.

[11] Eskin G. I., Kraevye zadachi dlya ellipticheskikh psevdodifferentsialnykh uravnenii, Nauka, M., 1973

[12] Vasil'ev V. B., Wave Factorization of Elliptic Symbols: Theory and Applications. Introduction to the Theory of Boundary-Value Problems in Nonsmooth Domains, Kluwer Academic, Dordrecht–Boston–London, 2000 | MR

[13] Vasilyev V. B., “Discreteness, periodicity, holomorphy, and factorization”, Integral Methods in Science and Engineering, v. 1, Theoretical Technique, eds. Constanda C., Dalla Riva M., Lamberti P. D., Musolino P., Birkhäuser, 2017, 315–324 | MR | Zbl

[14] Vasilyev V. B., “The periodic Cauchy kernel, the periodic Bochner kernel, and discrete pseudo-differential operators”, AIP Conf. Proc., 1863 (2017), 140014 | DOI

[15] Vasilyev V. B., “On discrete boundary-value problems”, AIP Conf. Proc., 1880 (2017), 050010 | DOI

[16] Vasilyev V. B., “Discrete operators in canonical domains”, WSEAS Trans. Math., 16 (2017), 197–201