Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2019_160_a13, author = {Yu. A. Farkov}, title = {Discrete wavelet transforms in {Walsh} analysis}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {126--136}, publisher = {mathdoc}, volume = {160}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2019_160_a13/} }
TY - JOUR AU - Yu. A. Farkov TI - Discrete wavelet transforms in Walsh analysis JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2019 SP - 126 EP - 136 VL - 160 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2019_160_a13/ LA - ru ID - INTO_2019_160_a13 ER -
Yu. A. Farkov. Discrete wavelet transforms in Walsh analysis. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference on Mathematical Modelling in Applied Sciences ICMMAS-17, St. Petersburg Polytechnic University, July 24-28, 2017, Tome 160 (2019), pp. 126-136. http://geodesic.mathdoc.fr/item/INTO_2019_160_a13/
[1] Agaev G. N., Vilenkin N. Ya., Dzhafarli G. M., Rubinshtein A. I., Multiplikativnye sistemy funktsii i garmonicheskii analiz na nul-mernykh gruppakh, Elm, Baku, 1981 | MR
[2] Burnaev E. V., Olenev N. N., “Mera blizosti dlya vremennykh ryadov na osnove veivlet koeffitsientov”, Tr. XLVIII nauch. konf. MFTI, FUPM, Dolgoprudnyi, 2005, 108–110
[3] Burnaev E. V., Olenev N. N., “Mery blizosti na osnove veivlet koeffitsientov dlya sravneniya statisticheskikh i raschetnykh vremennykh ryadov”, Mezhvuz. sb. nauch. i nauch.-metod. tr., 10, Izd-vo VyatGU, Kirov, 2006, 41–51
[4] Vilenkin N. Ya., “Ob odnom klasse polnykh ortogonalnykh sistem”, Izv. AN SSSR. Ser. mat., 11:4 (1947), 363–400 | Zbl
[5] Golubov B. I., Efimov A. V., Skvortsov V. A., Ryady i preobrazovaniya Uolsha: Teoriya i primeneniya, Izd-vo LKI, M., 2008 | MR
[6] Dobeshi I., Desyat lektsii po veivletam, Regul. khaot. dinamika, Izhevsk, 2001
[7] Lyubushin A. A., Yakovlev P. V., Rodionov E. A., “Mnogomernyi analiz parametrov fluktuatsii GPS signalov do i posle megazemletryaseniya 11 marta 2011 g. v Yaponii”, Geofiz. issled., 16:1 (2015), 14–23
[8] Kozyrev S. V., Khrennikov A. Yu., Shelkovich V. M., “$p$-Adicheskie vspleski i ikh prilozheniya”, Tr. mat. in-ta im. V. A. Steklova, 285, 2014, 166–206 | DOI | Zbl
[9] Lyubushin A. A., Farkov Yu. A., “Sinkhronnye komponenty finansovykh vremennykh ryadov”, Kompyut. issled. model., 9:4 (2017), 639–655
[10] Malla S., Veivlety v obrabotke signalov, Mir, M., 2005
[11] Novikov I. Ya., Protasov V. Yu., Skopina M. A., Teoriya vspleskov, Fizmatlit, M., 2006
[12] Protasov V. Yu., Farkov Yu. A., “Diadicheskie veivlety i masshtabiruyuschie funktsii na polupryamoi”, Mat. sb., 197:10 (2006), 129–160 | DOI | Zbl
[13] Rodionov E. A., “O primenenii veivletov k tsifrovoi obrabotke signalov”, Izv. Sarat. un-ta. Nov. ser. Mat. Mekh. Inform., 16:2 (2016), 217–225 | MR | Zbl
[14] Stroganov S. A., “Otsenka gladkosti nizkochastotnykh mikroseismicheskikh kolebanii s pomoschyu diadicheskikh veivletov”, Geofiz. issled., 13:1 (2012), 17–22
[15] Farkov Yu. A., “Biortogonalnye vspleski na gruppakh Vilenkina”, Tr. Mat. in-ta im. V. A. Steklova, 265, 2009, 110–124 | Zbl
[16] Farkov Yu. A., “Diskretnye veivlety i preobrazovanie Vilenkina—Krestensona”, Mat. zametki, 89:6 (2011), 914–928 | DOI | Zbl
[17] Farkov Yu. A., “Ortogonalnye vspleski v analize Uolsha”, Obobschennye integraly i garmonicheskii analiz, Sovr. probl. mat. mekh., XI, no. 1, eds. Lukashenko T. P., Solodov A. P., Izd-vo MGU, M., 2016, 62–75
[18] Farkov Yu. A., Borisov M. E., “Periodicheskie diadicheskie vspleski i kodirovanie fraktalnykh funktsii”, Izv. vuzov. Mat., 9 (2012), 54–65 | MR | Zbl
[19] Chobanu M. K., Mnogomernye mnogoskorostnye sistemy obrabotki signalov, Tekhnosfera, M., 2009
[20] Bölcskei H., Hlawatsch F., Feichtinger H. G., “Frame-theoretic analysis of oversampled filter banks”, IEEE Trans. Signal. Proc., 46:12 (1998), 3256–3268 | DOI | MR
[21] Chui C. K., Mhaskar H. N., “On trigonometric wavelets”, Constr. Approx., 9 (1993), 167–190 | DOI | MR | Zbl
[22] Cvetković Z., Vetterli M., “Oversampled filter banks”, IEEE Trans. Signal. Proc., 46:5 (1998), 1245–1255 | DOI | MR
[23] Evdokimov S., Skopina M., “On orthogonal $p$-adic wavelet bases”, J. Math. Anal. Appl., 422 (2015), 952–965 | DOI | MR
[24] Farkov Yu. A., “On wavelets related to the Walsh series”, J. Approx. Theory, 161:1 (2009), 259–279 | DOI | MR | Zbl
[25] Farkov Yu. A., “Periodic wavelets on the $p$-adic Vilenkin group”, $p$-Adic Numb. Ultr. Anal. Appl., 3:4 (2011), 281–287 | DOI | MR | Zbl
[26] Farkov Yu. A., “Periodic wavelets in Walsh analysis”, Commun. Math. Appl., 3:3 (2012), 223–242
[27] Farkov Yu. A., “Constructions of MRA-based wavelets and frames in Walsh analysis”, Poincaré J. Anal. Appl., 2 (2015), 13–36 | MR | Zbl
[28] Farkov Yu. A., “Nonstationary multiresolution analysis for Vilenkin groups”, Int. Conf. on Sampling Theory and Applications (Tallinn, Estonia, 3-7 July 2017), Tallinn, 595–598
[29] Farkov Yu. A., Lebedeva E. A., Skopina M. A., “Wavelet frames on Vilenkin groups and their approximation properties”, Int. J. Wavelets Multires. Inf. Process., 13:5 (2015), 1550036 | DOI | MR | Zbl
[30] Farkov Yu. A., Maksimov A. Yu., Stroganov S. A., “On biorthogonal wavelets related to the Walsh functions”, Int. J. Wavelets Multires. Inf. Process., 9 (2011), 485–499 | DOI | MR | Zbl
[31] Farkov Yu. A., Rodionov E. A., “Algorithms for wavelet construction on Vilenkin groups”, $p$-Adic Numb. Ultr. Anal. Appl., 3:1 (2011), 181–195 | DOI | MR | Zbl
[32] Farkov Yu. A., Rodionov E. A., “Nonstationary wavelets related to the Walsh functions”, Am. J. Comput. Math., 2 (2012), 82–87 | DOI
[33] Farkov Yu. A., Rodionov E. A., “On biorthogonal discrete wavelet bases”, Int. J. Wavelets Multires. Inf. Process., 13:1 (2015), 1550002 | DOI | MR | Zbl
[34] Fine N. J., “On the Walsh functions”, Trans. Am. Math. Soc., 65 (1949), 372–414 | DOI | MR | Zbl
[35] Gallegati M., Semmler W. (eds.), Wavelet Applications in Economics and Finance, Dynamic Modeling and Econometrics in Economics and Finance, Springer, Berlin, 2014 | Zbl
[36] In F., Kim S., An Introduction to Wavelet Theory in Finance: A Wavelet Multiscale Approach, World Scientific, Singapore, 2012 | MR
[37] Kholshchevnikova N., Skvortsov V. A., “On $U$- and $M$-sets for series with respect to characters of compact zero-dimensional groups”, J. Math. Anal. Appl., 446:1 (2017), 383–394 | DOI | MR | Zbl
[38] Krivoshein A., Protasov V., Skopina M., Multivariate Wavelet Frames, Industr. Appl. Math., Springer, Singapore, 2016 | MR | Zbl
[39] Lang W. C., “Fractal multiwavelets related to the Cantor dyadic group”, Int. J. Math. Math. Sci., 21 (1998), 307–317 | DOI | MR
[40] Schipp F., Wade W. R., Simon P., Walsh Series: An Introduction to Dyadic Harmonic Analysis, Adam Hilger, New York, 1990 | MR | Zbl
[41] Sendov Bl., “Adapted multiresolution analysis”, Functions, Series, Operators, Memorial Conf. in Honor of the 100th Anniversary of the Birth of Prof. G. Alexits (1899–1978) (Budapest, Hungary, August 9–13, 1999), eds. Leindler L. et al., János Bolyai Math. Soc., Budapest, 2002, 23–38 | Zbl
[42] Skopina M., “$p$-Adic wavelets”, Poincaré J. Anal. Appl., 2 (2015), 53–63 | MR | Zbl
[43] Vetterli M., Kovačević J., Wavelets and Subband Coding, Prentice Hall Signal Process. Ser., Prentice Hall, New Jersey, 1995 | Zbl