On linearly independent solutions of the homogeneous Schwartz problem
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference on Mathematical Modelling in Applied Sciences ICMMAS-17, St. Petersburg Polytechnic University, July 24-28, 2017, Tome 160 (2019), pp. 95-104.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the homogeneous Schwarz problem for Douglis analytic functions. We consider two-dimensional matrices $J$ with a multiple eigenvalue and the eigenvector, which is not proportional to a real vector. We obtain a sufficient condition for the matrix $J$ under which there exist two linearly independent solutions of the problem defined in a certain domain $D$. We present an example.
Mots-clés : matrix, domain, contour.
Keywords: eigenvalue, eigenvector, holomorphic function, conformal mapping
@article{INTO_2019_160_a10,
     author = {V. G. Nikolaev},
     title = {On linearly independent solutions of the homogeneous {Schwartz} problem},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {95--104},
     publisher = {mathdoc},
     volume = {160},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_160_a10/}
}
TY  - JOUR
AU  - V. G. Nikolaev
TI  - On linearly independent solutions of the homogeneous Schwartz problem
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 95
EP  - 104
VL  - 160
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_160_a10/
LA  - ru
ID  - INTO_2019_160_a10
ER  - 
%0 Journal Article
%A V. G. Nikolaev
%T On linearly independent solutions of the homogeneous Schwartz problem
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 95-104
%V 160
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_160_a10/
%G ru
%F INTO_2019_160_a10
V. G. Nikolaev. On linearly independent solutions of the homogeneous Schwartz problem. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference on Mathematical Modelling in Applied Sciences ICMMAS-17, St. Petersburg Polytechnic University, July 24-28, 2017, Tome 160 (2019), pp. 95-104. http://geodesic.mathdoc.fr/item/INTO_2019_160_a10/

[1] Vasilev V. B., Nikolaev V. G., “O zadache Shvartsa dlya ellipticheskikh sistem pervogo poryadka na ploskosti”, Differ. uravn., 53:10 (2017), 1351–1361 | DOI | Zbl

[2] Lavrentv M. A, Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1973

[3] Nikolaev V. G., Soldatov A. P., “O reshenii zadachi Shvartsa dlya $J$-analiticheskikh funktsii v oblastyakh, ogranichennykh konturom Lyapunova”, Differ. uravn., 51:7 (2015), 965–969 | DOI | Zbl

[4] Privalov I. I., Vvedenie v teoriyu funktsii kompleksnogo peremennogo, M., 1999 | MR

[5] Soldatov A. P., Funktsii, analiticheskie po Duglisu, Izd-vo NovGU, Novgorod, 1995

[6] Nikolaev V.G., “A criterion for the existence of nontrivial solutions to the homogeneous Schwarz problem”, J. Math. Sci., 219:2 (2016), 220–225 | DOI | MR | Zbl

[7] Soldatov A. P., “The Schwarz problem for Douglis analytic functions”, J. Math. Sci., 173:2 (2011), 221–224 | DOI | MR | Zbl