Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2019_160_a10, author = {V. G. Nikolaev}, title = {On linearly independent solutions of the homogeneous {Schwartz} problem}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {95--104}, publisher = {mathdoc}, volume = {160}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2019_160_a10/} }
TY - JOUR AU - V. G. Nikolaev TI - On linearly independent solutions of the homogeneous Schwartz problem JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2019 SP - 95 EP - 104 VL - 160 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2019_160_a10/ LA - ru ID - INTO_2019_160_a10 ER -
%0 Journal Article %A V. G. Nikolaev %T On linearly independent solutions of the homogeneous Schwartz problem %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2019 %P 95-104 %V 160 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2019_160_a10/ %G ru %F INTO_2019_160_a10
V. G. Nikolaev. On linearly independent solutions of the homogeneous Schwartz problem. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference on Mathematical Modelling in Applied Sciences ICMMAS-17, St. Petersburg Polytechnic University, July 24-28, 2017, Tome 160 (2019), pp. 95-104. http://geodesic.mathdoc.fr/item/INTO_2019_160_a10/
[1] Vasilev V. B., Nikolaev V. G., “O zadache Shvartsa dlya ellipticheskikh sistem pervogo poryadka na ploskosti”, Differ. uravn., 53:10 (2017), 1351–1361 | DOI | Zbl
[2] Lavrentv M. A, Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1973
[3] Nikolaev V. G., Soldatov A. P., “O reshenii zadachi Shvartsa dlya $J$-analiticheskikh funktsii v oblastyakh, ogranichennykh konturom Lyapunova”, Differ. uravn., 51:7 (2015), 965–969 | DOI | Zbl
[4] Privalov I. I., Vvedenie v teoriyu funktsii kompleksnogo peremennogo, M., 1999 | MR
[5] Soldatov A. P., Funktsii, analiticheskie po Duglisu, Izd-vo NovGU, Novgorod, 1995
[6] Nikolaev V.G., “A criterion for the existence of nontrivial solutions to the homogeneous Schwarz problem”, J. Math. Sci., 219:2 (2016), 220–225 | DOI | MR | Zbl
[7] Soldatov A. P., “The Schwarz problem for Douglis analytic functions”, J. Math. Sci., 173:2 (2011), 221–224 | DOI | MR | Zbl