Subrings of invariants for actions of finite-dimensional Hopf algebras
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Seminar on Algebra and Mathematical Logic of the Kazan (Volga Region) Federal University, Tome 158 (2018), pp. 40-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is a survey of recent work on invariants of actions of Hopf algebras. Its highlights are results on integrality of $H$-module PI algebras over the subrings of invariant elements obtained by P. Etingof and M. Eryashkin. Older results are also reviewed.
Keywords: Hopf algebras, $H$-module algebras
Mots-clés : invariants.
@article{INTO_2018_158_a2,
     author = {S. M. Skryabin},
     title = {Subrings of invariants for actions of finite-dimensional {Hopf} algebras},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {40--80},
     publisher = {mathdoc},
     volume = {158},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_158_a2/}
}
TY  - JOUR
AU  - S. M. Skryabin
TI  - Subrings of invariants for actions of finite-dimensional Hopf algebras
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 40
EP  - 80
VL  - 158
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_158_a2/
LA  - ru
ID  - INTO_2018_158_a2
ER  - 
%0 Journal Article
%A S. M. Skryabin
%T Subrings of invariants for actions of finite-dimensional Hopf algebras
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 40-80
%V 158
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_158_a2/
%G ru
%F INTO_2018_158_a2
S. M. Skryabin. Subrings of invariants for actions of finite-dimensional Hopf algebras. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Seminar on Algebra and Mathematical Logic of the Kazan (Volga Region) Federal University, Tome 158 (2018), pp. 40-80. http://geodesic.mathdoc.fr/item/INTO_2018_158_a2/

[1] Artamonov V. A., “Stroenie algebr Khopfa”, Itogi nauki i tekhniki. Algebra. Topologiya. Geometriya., 29 (1991), 3–63, VINITI, M.

[2] Artamonov V. A., “Invarianty algebr Khopfa”, Vestn. MGU. Ser. mat. mekh., 1996, no. 4, 45–49 | Zbl

[3] Eryashkin M. S., “Invarianty deistviya poluprostoi konechnomernoi algebry Khopfa na algebrakh spetsialnogo vida”, Izv. vuzov. Mat., 2011, no. 8, 14–22 | MR | Zbl

[4] Eryashkin M. S., “Koltsa Martindeila i $H$-modulnye algebry, obladayuschie invariantnymi kharakteristicheskimi mnogochlenami”, Sib. mat. zh., 53 (2012), 822–838 | MR

[5] Eryashkin M. S., “Invarianty i koltsa chastnykh $H$-polupervichnykh $H$-modulnykh algebr, udovletvoryayuschikh polinomialnomu tozhdestvu”, Izv. vuzov. Mat., 2016, no. 5, 22–40 | MR | Zbl

[6] Eryashkin M. S., “Invarianty deistviya poluprostoi algebry Khopfa na PI-algebre”, Izv. vuzov. Mat., 2016, no. 8, 21–34 | MR | Zbl

[7] Kharchenko V. K., “Rasshireniya Galua i koltsa chastnykh”, Algebra i logika, 13 (1974), 460–484 | Zbl

[8] Totok A. A., “Ob invariantakh konechnomernykh tochechnykh algebr Khopfa”, Vestn. MGU. Ser. mat. mekh., 3 (1997), 31–34

[9] Totok A. A., “Deistviya algebr Khopfa”, Mat. sb., 189 (1998), 149–160 | DOI | MR

[10] Bahturin Yu. A., Linchenko V., “Identities of algebras with actions of Hopf algebras”, J. Algebra, 202 (1998), 634–654 | DOI | MR | Zbl

[11] Bergen J., Cohen M., Fischman D., “Irreducible actions and faithful actions of Hopf algebras”, Isr. J. Math., 72 (1990), 5–18 | DOI | MR | Zbl

[12] Bergen J., Montgomery S., “Smash products and outer derivations”, Isr. J. Math., 53 (1986), 321–345 | DOI | MR | Zbl

[13] Bergman G. M., Isaacs I. M., “Rings with fixed-point-free group actions”, Proc. London Math. Soc., 27 (1973), 69–87 | DOI | MR | Zbl

[14] Björk J.-E., “Conditions which imply that subrings of semiprimary rings are semiprimary”, J. Algebra, 19 (1971), 384–395 | DOI | MR | Zbl

[15] Chin W., “Spectra of smash products”, Isr. J. Math., 72 (1990), 84–98 | DOI | MR | Zbl

[16] Cohen M., “Smash products, inner actions and quotient rings”, Pac. J. Math., 125 (1986), 45–66 | DOI | MR

[17] Cohen M., “Hopf algebra actions – revisited”, Contemp. Math., 134 (1992), 1–18 | DOI | MR | Zbl

[18] Cohen M., Fischman D., “Hopf algebra actions”, J. Algebra, 100 (1986), 363–379 | DOI | MR | Zbl

[19] Cohen M., Fischman D., “Semisimple extensions and elements of trace $1$”, J. Algebra, 149 (1992), 419–437 | DOI | MR | Zbl

[20] Cohen M., Fischman D., Montgomery S., “Hopf Galois extensions, smash products, and Morita equivalence”, J. Algebra, 133 (1990), 351–372 | DOI | MR | Zbl

[21] Cohen M., Rowen L. H., “Group graded rings”, Commun. Algebra, 11 (1983), 12535–1270 | MR

[22] Cohen M., Westreich S., “Central invariants of $H$-module algebras”, Commun. Algebra, 21 (1993), 2859–2883 | DOI | MR | Zbl

[23] Cohen M., Westreich S., “From supersymmetry to quantum commutativity”, J. Algebra, 168 (1994), 1–27 | DOI | MR | Zbl

[24] Cohen M., Westreich S., and Zhu S., “Determinants, integrality and Noether's theorem for quantum commutative algebras”, Isr. J. Math., 96 (1996), 185–222 | DOI | MR | Zbl

[25] Demazure M., Gabriel P., Groupes algébriques. Vol. I, Masson, Paris, 1970 | MR

[26] Doi Y., “Algebras with total integrals”, Commun. Algebra, 13 (1985), 2137–2159 | MR | Zbl

[27] Etingof P., “Galois bimodules and integrality of PI comodule algebras over invariants”, J. Noncommut. Geom., 9 (2015), 567–602 | DOI | MR | Zbl

[28] Etingof P., Walton C., “Semisimple Hopf actions on commutative domains”, Adv. Math., 251 (2014), 47–61 | DOI | MR | Zbl

[29] Etingof P., WaltonC., “Pointed Hopf actions on fields, I”, Transform. Groups., 20 (2015), 985–1013 | DOI | MR | Zbl

[30] Etingof P., Walton C., “Pointed Hopf actions on fields, II”, J. Algebra, 460 (2016), 253–283 | DOI | MR | Zbl

[31] Ferrer Santos W. R., “Finite generation of the invariants of finite dimensional Hopf algebras”, J. Algebra, 165 (1994), 543–549 | DOI | MR | Zbl

[32] Kalniuk M. and Tyc A., “Geometrically reductive Hopf algebras and their invariants”, J. Algebra, 320 (2008), 1344–1363 | DOI | MR | Zbl

[33] Kato T., “Self-injective rings”, Tohoku Math. J., 19 (1967), 485–495 | DOI | MR | Zbl

[34] Kreimer H. F. and Takeuchi M., “Hopf algebras and Galois extensions of an algebra”, Indiana Univ. Math. J., 30 (1981), 675–692 | DOI | MR | Zbl

[35] Linchenko V., Montgomery S., “Semiprime smash products and $H$-stable prime radicals for PI-algebras”, Proc. Amer. Math. Soc., 135 (2007), 3091–3098 | DOI | MR | Zbl

[36] Matczuk J., “Centrally closed Hopf module algebras”, Commun. Algebra, 19 (1991), 1909–1918 | DOI | MR | Zbl

[37] McConnell J. C., Robson J. C., Noncommutative Noetherian rings, Wiley, 1987 | MR | Zbl

[38] Montgomery S., “Outer automorphisms of semi-prime rings”, J. London Math. Soc., 18 (1978), 209–220 | DOI | MR | Zbl

[39] Montgomery S., “Fixed Rings of Finite Automorphism Groups of Associative Rings”, Lect. Notes Math., 818 (1980), Springer-Verlag | DOI | MR | Zbl

[40] Montgomery S., “Hopf Algebras and Their Actions on Rings”, CBMS Reg. Conf. Ser. Math., 82 (1993) | DOI | MR

[41] Montgomery S., Schneider H.-J., “Prime ideals in Hopf Galois extensions”, Isr. J. Math., 112 (1999), 187–235 | DOI | MR | Zbl

[42] Montgomery S., Small L. W., “Integrality and prime ideals in fixed rings of P.I. rings”, J. Pure Appl. Algebra., 31 (1984), 185–190 | DOI | MR | Zbl

[43] Mumford D., Abelian varieties, Oxford Univ. Press, 1970 | MR | Zbl

[44] Pare R., Schelter W., “Finite extensions are integral”, J. Algebra, 53 (1978), 477–479 | DOI | MR | Zbl

[45] Passman D. S., “Infinite Crossed Products”, Pure Appl. Math., 135 (1989), Academic Press | MR | Zbl

[46] Quinn D., “Integrality over fixed rings”, J. London Math. Soc., 40 (1989), 206–214 | DOI | MR | Zbl

[47] Rowen L. H., Ring theory. Vol. II, Academic Press, 1988 | MR

[48] Schelter W., “Integral extensions of rings satisfying a polynomial identity”, J. Algebra, 40 (1976), 245–257 | DOI | MR | Zbl

[49] Skryabin S., “Invariants of finite group schemes”, J. London Math. Soc., 65 (2002), 339–360 | DOI | MR | Zbl

[50] Skryabin S., “Invariants of finite Hopf algebras”, Adv. Math., 183 (2004), 209–239 | DOI | MR | Zbl

[51] Skryabin S., “Projectivity and freeness over comodule algebras”, Trans. Am. Math. Soc., 359 (2007), 2597–2623 | DOI | MR | Zbl

[52] Skryabin S., “Structure of $H$-semiprime Artinian algebras”, Alg. Represent. Theory., 14 (2011), 803–822 | DOI | MR | Zbl

[53] Skryabin S., “Coring stabilizers for a Hopf algebra coaction”, J. Algebra, 338 (2011), 71–91 | DOI | MR | Zbl

[54] Skryabin S., “Invariant subrings and Jacobson radicals of Noetherian Hopf module algebras”, Isr. J. Math., 207 (2015), 881–898 | DOI | MR | Zbl

[55] Skryabin S., “Finiteness of the number of coideal subalgebras”, Proc. Am. Math. Soc., 145 (2017), 2859–2869 | DOI | MR | Zbl

[56] Skryabin S., “The left and right dimensions of a skew field over the subfield of invariants”, J. Algebra, 482 (2017), 248–263 | DOI | MR | Zbl

[57] Skryabin S., Van Oystaeyen F., “The Goldie theorem for $H$-semiprime algebras”, J. Algebra, 305 (2006), 292–320 | DOI | MR | Zbl

[58] Zhu S., “Integrality of module algebras over its invariants”, J. Algebra, 180 (1996), 187–205 | DOI | MR | Zbl