Subrings of invariants for actions of finite-dimensional Hopf algebras
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Seminar on Algebra and Mathematical Logic of the Kazan (Volga Region) Federal University, Tome 158 (2018), pp. 40-80

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is a survey of recent work on invariants of actions of Hopf algebras. Its highlights are results on integrality of $H$-module PI algebras over the subrings of invariant elements obtained by P. Etingof and M. Eryashkin. Older results are also reviewed.
Keywords: Hopf algebras, $H$-module algebras
Mots-clés : invariants.
@article{INTO_2018_158_a2,
     author = {S. M. Skryabin},
     title = {Subrings of invariants for actions of finite-dimensional {Hopf} algebras},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {40--80},
     publisher = {mathdoc},
     volume = {158},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_158_a2/}
}
TY  - JOUR
AU  - S. M. Skryabin
TI  - Subrings of invariants for actions of finite-dimensional Hopf algebras
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 40
EP  - 80
VL  - 158
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_158_a2/
LA  - ru
ID  - INTO_2018_158_a2
ER  - 
%0 Journal Article
%A S. M. Skryabin
%T Subrings of invariants for actions of finite-dimensional Hopf algebras
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 40-80
%V 158
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_158_a2/
%G ru
%F INTO_2018_158_a2
S. M. Skryabin. Subrings of invariants for actions of finite-dimensional Hopf algebras. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Seminar on Algebra and Mathematical Logic of the Kazan (Volga Region) Federal University, Tome 158 (2018), pp. 40-80. http://geodesic.mathdoc.fr/item/INTO_2018_158_a2/