Subrings of invariants for actions of finite-dimensional Hopf algebras
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Seminar on Algebra and Mathematical Logic of the Kazan (Volga Region) Federal University, Tome 158 (2018), pp. 40-80
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper is a survey of recent work on invariants of actions of Hopf algebras. Its highlights are results on integrality of $H$-module PI algebras over the subrings of invariant elements obtained by P. Etingof and M. Eryashkin. Older results are also reviewed.
Keywords:
Hopf algebras, $H$-module algebras
Mots-clés : invariants.
Mots-clés : invariants.
@article{INTO_2018_158_a2,
author = {S. M. Skryabin},
title = {Subrings of invariants for actions of finite-dimensional {Hopf} algebras},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {40--80},
publisher = {mathdoc},
volume = {158},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2018_158_a2/}
}
TY - JOUR AU - S. M. Skryabin TI - Subrings of invariants for actions of finite-dimensional Hopf algebras JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2018 SP - 40 EP - 80 VL - 158 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2018_158_a2/ LA - ru ID - INTO_2018_158_a2 ER -
%0 Journal Article %A S. M. Skryabin %T Subrings of invariants for actions of finite-dimensional Hopf algebras %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2018 %P 40-80 %V 158 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2018_158_a2/ %G ru %F INTO_2018_158_a2
S. M. Skryabin. Subrings of invariants for actions of finite-dimensional Hopf algebras. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Seminar on Algebra and Mathematical Logic of the Kazan (Volga Region) Federal University, Tome 158 (2018), pp. 40-80. http://geodesic.mathdoc.fr/item/INTO_2018_158_a2/