Mac-Kendrick--Tornquist Population Model
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Actual Problems of Applied Mathematics and Physics,” Kabardino-Balkaria, Nalchik, May 17–21, 2017, Tome 154 (2018), pp. 54-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider an age population model in which the mortality function is given by the Tornquist distribution. As a result, existence conditions for nonnegative stationary states of the model considered are obtained.
Mots-clés : population, age structure
Keywords: biological potential, stationary state, fertility law.
@article{INTO_2018_154_a6,
     author = {A. A. Kaygermazov and Kh. K. Shakov and F. Kh. Kudaeva},
     title = {Mac-Kendrick--Tornquist {Population} {Model}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {54--61},
     publisher = {mathdoc},
     volume = {154},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_154_a6/}
}
TY  - JOUR
AU  - A. A. Kaygermazov
AU  - Kh. K. Shakov
AU  - F. Kh. Kudaeva
TI  - Mac-Kendrick--Tornquist Population Model
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 54
EP  - 61
VL  - 154
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_154_a6/
LA  - ru
ID  - INTO_2018_154_a6
ER  - 
%0 Journal Article
%A A. A. Kaygermazov
%A Kh. K. Shakov
%A F. Kh. Kudaeva
%T Mac-Kendrick--Tornquist Population Model
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 54-61
%V 154
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_154_a6/
%G ru
%F INTO_2018_154_a6
A. A. Kaygermazov; Kh. K. Shakov; F. Kh. Kudaeva. Mac-Kendrick--Tornquist Population Model. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Actual Problems of Applied Mathematics and Physics,” Kabardino-Balkaria, Nalchik, May 17–21, 2017, Tome 154 (2018), pp. 54-61. http://geodesic.mathdoc.fr/item/INTO_2018_154_a6/

[1] Volterra V., Matematicheskaya teoriya borby za suschestvovanie, Nauka, M., 1976 | MR

[2] Gavrilov L. A., Gavrilova N. S., Biologiya prodolzhitelnosti zhizni, Nauka, M., 1991

[3] Dmitriev V. B., Gerasimov Yu. L., “O zadachakh dlya uravneniya Mak-Kendrika—fon Forstera i ikh primenenii v populyatsionnoi dinamike dafnii pri issledovanii toksichnosti”, Vestnik Samarskogo universiteta, 2010, no. 6, 14–25

[4] Zakharov A. A., “Zhestkaya konkurentsiya v neodnorodnoi srede”, Nelineinye kolebaniya i ekologiya, Yaroslavl, 1984, 16–33

[5] Zaslavskii B. G., Poluektov R. A., Upravlenie ekologicheskimi sistemami, Nauka, M., 1988 | MR

[6] Ilichev I. G., “K teorii konkurentsii biologicheskikh vidov v peremennoi srede”, Dinamika biologicheskikh populyatsii, Mezhvuz. sb.: Gorkovskii universitet, 1988, 10–20

[7] Kaigermazov A. A., “Ob odnoi nelineinoi populyatsionnoi modeli zavisyaschei ot vozrasta”, Dep. VINITI, 1988, no. 4445-V88

[8] Kaigermazov A. A., “Kraevaya zadacha dlya odnoi nelineinoi populyatsionnoi modeli”, Nelineinye kraevye zadachi matematicheskoi fiziki i ikh prilozheniya, Institut matematiki AN Ukrainy, Kiev, 1990, 57–59

[9] Kaigermazov A. A., “Matematicheskii analiz odnoi nelineinoi populyatsionnoi modeli”, Nelineinye evolyutsionnye uravneniya v prikladnykh zadachakh, Institut matematiki AN Ukrainy, Kiev, 1991, 55–56

[10] Kaigermazov A. A., “Matematicheskii analiz odnoi populyatsionnoi modeli”, Nelineinye kraevye zadachi matematicheskoi fiziki i ikh prilozheniya, Institut matematiki AN Ukrainy, Kiev, 1993, 60–51

[11] Kaigermazov A. A., Kaziev V. M., “Raschet vlazhnosti pochvy s uchetom dinamiki nakaplivaemoi biomassy”, Metody matematicheskogo modelirovaniya i vychislitelnogo eksperimenta v sistemakh avtomatizirovannogo proektirovaniya i planirovaniya, Nalchik, 1989, 110–117

[12] Kaigermazov A. A., Kudaeva F. Kh., Abaeva Z. V., “Nepreryvnaya populyatsionnaya model s vozrastnoi strukturoi”, 21 vek: fundamentalnaya nauka i tekhnologii, Materialy mezhdunarodnoi nauchno-prakticheskoi konferentsii, M., 2012, 229–234

[13] Kaigermazov A. A., Kudaeva F. Kh., “Ob odnoi matematicheskoi modeli dinamiki vozrastnoi struktury”, Estestvennye matematicheskie nauki v sovremennom mire, Novosibirsk, 2014, 17–26

[14] Kaigermazov A. A., Kudaeva F. Kh., “Statsionarnye sostoyaniya obobschennoi populyatsionnoi modeli Veibulla”, Yuzhno-sibirskii nauchnyi vestnik, 2015, no. 1 (9), 10–14

[15] Kaigermazov A. A., Kudaeva F. Kh., “Statsionarnye sostoyaniya nepreryvnoi populyatsionnoi modeli s vozrastnoi strukturoi”, Yuzhno-sibirskii nauchnyi vestnik, 2015, no. 2 (10), 9–12

[16] Kaigermazov A. A., Kudaeva F. Kh., Diskretnye i nepreryvnye modeli matematicheskoi biologii, Nalchik, 2008

[17] Kaigermazov A. A., Saieg T. Kh., “Ob odnoi matematicheskoi modeli s vozrastnoi strukturoi”, Nelineinye problemy differentsialnykh uravnenii i matematicheskoi fiziki, Kiev, 1997, 130–132

[18] Kaziev V. M., “Ob odnoi modeli populyatsionnoi dinamiki”, Nelineinye kraevye zadachi matematicheskoi fiziki i ikh prilozheniya, Institut matematiki AN Ukrainy, Kiev, 1989, 50–53

[19] Kuznetsov Yu. A., Kuznetsova A. Yu., “Nekotorye matematicheskie modeli dinamiki strukturirovannykh populyatsii”, Vestnik Nizhegorodskogo universiteta, 2011, no. 3, 99–107

[20] Matsenko V. G., Analiz nekotorykh nepreryvnykh modelei dinamiki vozrastnoi struktury populyatsii, M., 1981

[21] Nedorezov L. V., Utyupin Yu. V., Utyupina S. P., “Effekt nasyscheniya v modeli sistemy «khischnik-zhertva»”, Sibirskii zhurnal industrialnoi matematiki, IV:1 (2001), 150–164 | MR

[22] Poluektov R. A., Dinamicheskaya teoriya biologicheskikh populyatsii, Nauka, M., 1974 | MR

[23] Riznichenko G. Yu., Lektsii po matematicheskim modelyam v biologii, Izhevsk, 2002

[24] Riznichenko G. Yu., Rubin A. B., Matematicheskie modeli biologicheskikh produktsionnykh protsessov, Izd-vo MGU, M., 1993

[25] Svirezhev Yu. M., Logofet D. O., Ustoichivost biologicheskikh soobschestv, Nauka, M., 1978 | MR

[26] Stronina M. I., Matematicheskii analiz odnogo klassa modelei dinamiki biologicheskikh populyatsii, VTs AN SSSR, M., 1979

[27] Busenberg S., Yanelli M. A., “Class of nonlinear problems in age — dependent population dynamics”, J. of nonlinear. anal. Theory end appl. N.S., 1983, 501–529 | DOI | MR | Zbl

[28] Gompers B., “On the nature of the function expressive of the law of human mortality”, Fhil., Traus., 115 (1825), 513–585

[29] Gurtin V., Mc. Camy R. C., “Nonlinear age-dependent population dynamics”, Arch., Rational Mech., Anal., 54 (1974), 281–300 | DOI | MR | Zbl

[30] Hutchinson G. E., “Circular censual systems in ecology”, Ann. N.Y. Acad. Sci., 50 (1923), 221–246 | DOI

[31] Hoppensteadt F. G., “An age dependent epidemic model”, I. Franklin Inst., 291 (1974), 325–333 | DOI | MR

[32] Hoppensteadt F. G., “Some in fluencies of population biology on mathematics”, Mem. Of the Am. Math. Soc., 48:298 (1984), 25–29 | MR

[33] Malthus T. R., An essay on the principe of population, Johnson, London, 1788

[34] Mc. Kendrick A. G., “The theory of continuous probabilities”, Proc. London Math. Soc., 23 (1914), 401–415 | DOI | MR

[35] Mc. Kendrick A. G., “Applications of mathematics to medical problems”, Proc. Edinburgh Math. Soc., 44:1 (1926), 98–130 | Zbl

[36] Ispas M., “A model of a biological population dynamics”, Bull. Inst. Polytech., 1985, 197–200 | MR | Zbl

[37] Richard H., “Elderfcin nonlinear, globally age-dependent population models: Some basic theory”, J. Math. Anal. and Appl., 1985, no. 108, 546–562 | MR | Zbl

[38] Sharpe F. R., Lotka A. J., “A problem in age distribution”, Philosophical Mag., 21 (1911), 435–438 | DOI

[39] Verhulst P. F., “Notice sur la loi gue la population suit daus son accroissement”, Corresp. Math. et Phys., 10 (1938), 113–121

[40] Von Foerster H., “Some remarks on changing populations”, The Kinetics of Cellular Proliferation, ed. F. Stohlman, Grune and Stratton, New York, 1959, 382–407

[41] Webb G. E., Theory of nonlinear age-dependent population dynamics, Vanderbilt University, Nashville, Tennessee, 1983 | MR

[42] Swart J. H., “Hopf bifurcation and the stability of non-linear age-dependent population models”, Comput. Math. Appl., 15:6–8 (1988), 555–564 | DOI | MR | Zbl