Functional and Logical Modeling of the $\Sigma\Pi$-Neuron
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Actual Problems of Applied Mathematics and Physics,” Kabardino-Balkaria, Nalchik, May 17–21, 2017, Tome 154 (2018), pp. 49-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we propose a circuit method for implementing a logical $\Sigma\Pi$-neuron. Digital and hybrid schemes of the logical $\Sigma\Pi$-neuron are presented. Each scheme is divided into two layers implementing the multiplicative and additive operations, respectively. Schemes consist of digital and analog elements. The layer that performs the multiplicative function is identical in both schemes; the additive layer in the digital scheme is implemented by a digital adder. In the hybrid scheme, it is implemented by digital-analog converters and an analog voltage adder. For implementing the threshold function in hybrid and digital schemes, a comparator and a digital comparator are used, respectively. The results obtained can be used for constructing $\Sigma\Pi$-neuron networks.
Keywords: artificial neuron, logical sigma-pi neuron, neural network, sigma-pi neural network.
@article{INTO_2018_154_a5,
     author = {M. A. Kazakov},
     title = {Functional and {Logical} {Modeling} of the $\Sigma\Pi${-Neuron}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {49--53},
     publisher = {mathdoc},
     volume = {154},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_154_a5/}
}
TY  - JOUR
AU  - M. A. Kazakov
TI  - Functional and Logical Modeling of the $\Sigma\Pi$-Neuron
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 49
EP  - 53
VL  - 154
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_154_a5/
LA  - ru
ID  - INTO_2018_154_a5
ER  - 
%0 Journal Article
%A M. A. Kazakov
%T Functional and Logical Modeling of the $\Sigma\Pi$-Neuron
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 49-53
%V 154
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_154_a5/
%G ru
%F INTO_2018_154_a5
M. A. Kazakov. Functional and Logical Modeling of the $\Sigma\Pi$-Neuron. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Actual Problems of Applied Mathematics and Physics,” Kabardino-Balkaria, Nalchik, May 17–21, 2017, Tome 154 (2018), pp. 49-53. http://geodesic.mathdoc.fr/item/INTO_2018_154_a5/

[1] Babich N. Ch., Zhukov I. A., Kompyuternaya skhemotekhnika. Metody postroeniya i proektirovaniya, MK-Press, K., 2004

[2] Khaikin S., Neironnye seti: polnyi kurs, Vilyams, M., 2006

[3] Shibzukhov Z. M., “Nekotorye voprosy teoreticheskoi neiroinformatiki”, XIII Vserossiiskaya nauchno-tekhnicheskaya konferentsiya «Neiroinformatika-2011», Lektsii po neiroinformatike, NIYaU MIFI, M., 2011, 44–72

[4] Shibzukhov Z. M., Konstruktivnye metody obucheniya sigma-pi neironnykh setei, Nauka, M., 2006 | MR

[5] Harmon L. D., “Studies with artificial neurons, I. Properties and functions of an artificial neuron”, Kybernetik Heft., 3 (1961), 89–101 | DOI

[6] Shibzukhov Z. M., “About $\Sigma\Pi$-neuron models of aggregating type”, Adv. Neural Networks, Lect. Notes Comp. Sci., 9719, eds. L. Cheng, Q. Liu, A. Ronzhin, eds., Springer-Verlag, 2016, 657–664 | DOI