Nonlocal Turbulent Diffusion Models
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Actual Problems of Applied Mathematics and Physics,” Kabardino-Balkaria, Nalchik, May 17–21, 2017, Tome 154 (2018), pp. 113-122

Voir la notice de l'article provenant de la source Math-Net.Ru

A brief review of the emergence and development of the nonlocal approach to the problem of turbulent diffusion with a discussion of the physical reasons of the nonlocality is given. The main attention is paid to fractional differential operators. In concluding the paper, the author's original results on applications to the diffusion of cosmic rays in the interstellar galactic medium are presented.
Keywords: Brownian motion, fractional Laplacian, Levy–Feldheim distribution, self-similarity.
Mots-clés : anomalous diffusion
@article{INTO_2018_154_a13,
     author = {V. V. Uchaikin},
     title = {Nonlocal {Turbulent} {Diffusion} {Models}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {113--122},
     publisher = {mathdoc},
     volume = {154},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_154_a13/}
}
TY  - JOUR
AU  - V. V. Uchaikin
TI  - Nonlocal Turbulent Diffusion Models
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 113
EP  - 122
VL  - 154
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_154_a13/
LA  - ru
ID  - INTO_2018_154_a13
ER  - 
%0 Journal Article
%A V. V. Uchaikin
%T Nonlocal Turbulent Diffusion Models
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 113-122
%V 154
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_154_a13/
%G ru
%F INTO_2018_154_a13
V. V. Uchaikin. Nonlocal Turbulent Diffusion Models. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Actual Problems of Applied Mathematics and Physics,” Kabardino-Balkaria, Nalchik, May 17–21, 2017, Tome 154 (2018), pp. 113-122. http://geodesic.mathdoc.fr/item/INTO_2018_154_a13/