Meromorphic Functions with Slow Growth of Nevanlinna Characteristics and Rapid Growth of Spherical Derivative
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Complex analysis, Tome 153 (2018), pp. 128-134.

Voir la notice de l'article provenant de la source Math-Net.Ru

Meromorphic functions with a given growth of a spherical derivative on the complex plane are described in terms of the relative location of $a$-points of functions. The result obtained allows one to construct an example of a meromorphic function in $\mathbb{C}$ with a slow growth of Nevanlinna characteristics and arbitrary growth of the spherical derivative. In addition, based on the universality property of the Riemann zeta-function, we estimate the growth of the spherical derivative of $\zeta(z)$.
Keywords: meromorphic function, spherical derivative, Nevanlinna characteristics, Riemann zeta-function.
@article{INTO_2018_153_a8,
     author = {Sh. A. Makhmutov and M. S. Makhmutova},
     title = {Meromorphic {Functions} with {Slow} {Growth} of {Nevanlinna} {Characteristics} and {Rapid} {Growth} of {Spherical} {Derivative}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {128--134},
     publisher = {mathdoc},
     volume = {153},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_153_a8/}
}
TY  - JOUR
AU  - Sh. A. Makhmutov
AU  - M. S. Makhmutova
TI  - Meromorphic Functions with Slow Growth of Nevanlinna Characteristics and Rapid Growth of Spherical Derivative
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 128
EP  - 134
VL  - 153
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_153_a8/
LA  - ru
ID  - INTO_2018_153_a8
ER  - 
%0 Journal Article
%A Sh. A. Makhmutov
%A M. S. Makhmutova
%T Meromorphic Functions with Slow Growth of Nevanlinna Characteristics and Rapid Growth of Spherical Derivative
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 128-134
%V 153
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_153_a8/
%G ru
%F INTO_2018_153_a8
Sh. A. Makhmutov; M. S. Makhmutova. Meromorphic Functions with Slow Growth of Nevanlinna Characteristics and Rapid Growth of Spherical Derivative. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Complex analysis, Tome 153 (2018), pp. 128-134. http://geodesic.mathdoc.fr/item/INTO_2018_153_a8/

[1] Gavrilov V. I., “Povedenie meromorfnykh funktsii v okrestnosti suschestvenno osoboi tochki”, Izv. AN SSSR. Ser. mat., 30:4 (1966), 767–788 | Zbl

[2] Goldberg A. A., Ostrovskii I. V., Raspredelenie znachenii meromorfnykh funktsii, Nauka, M., 1970 | MR

[3] Makhmutov Sh. A., “Raspredelenie znachenii meromorfnykh funktsii klassa $W_p$”, Dokl. AN SSSR, 273:5 (1983), 1062–1066 | MR | Zbl

[4] Makhmutov Sh. A., “Klassy meromorfnykh funktsii, kharakterizuemye sfericheskoi proizvodnoi”, Dokl. AN SSSR, 287:4 (1986), 789–794 | MR | Zbl

[5] Montel P., Normalnye semeistva analiticheskikh funktsii, ONTI, M.-L., 1936

[6] Anderson J. M., Clunie J., “Slowly growing meromorphic functions”, Comment. Math. Helv., 40 (1966), 267-–280 | DOI | MR | Zbl

[7] Aulaskari R., Makhmutov S., Rättyä J., “Weighted Yosida functions”, Complex Var. Ellipt. Functions, 55:1-3 (2010), 167–172 | DOI | MR | Zbl

[8] Gauthier P. M., “Cercles de remplissage for the Riemann Zeta Function”, Can. Math. Bull., 46:1 (2003), 95–97 | DOI | MR | Zbl

[9] Gauthier P. M., “Approximation of and by the Riemann Zeta Function”, Comput. Methods Funct. Theory, 10:2 (2010), 603–638 | DOI | MR | Zbl

[10] Gavrilov V. I., “The behaviour of meromorphic functions in the neighborhood of an essential singularity”, Res. Report 2, Indian Institue of Technology, Bombay, India, 1969, 1–9

[11] Julia G., Leçons sur les fonctions uniformes à point singulier essentiel isolè, Gauthier-Villars, Paris, 1924 | MR | Zbl

[12] Lehto O., Virtanen K. I., “Boundary behaviour and normal meromorphic functions”, Acta Math., 97 (1957), 47–65 | DOI | MR | Zbl

[13] Lehto O., “The spherical derivative of meromorphic functions in the neighbourhood of an isolated singularity”, Comment. Math. Helv., 33 (1959), 196–205 | DOI | MR | Zbl

[14] Liao L., Yang C. C., “On some new properties of the gamma function and the Riemann zeta function”, Math. Nachr., 257:3 (2003), 59-–66 | DOI | MR | Zbl

[15] Marty F., “Recherches sur la répartition des valeurs d'une fonction méromorphe”, Ann. Fac. Sci. Univ. Toulouse, 23:3 (1931), 183–262 | DOI | MR

[16] Milloux H., “Le théorème de M. Picard. Suites de fonctions holomorphes. Fonctions méromorphes et fonctions entieres”, J. Math. Pures Appl., 9-e Sér.:3 (1924), 345–401 | MR

[17] Milloux H., “Sur le théorème de M. Picard”, Bull. Soc. Math. France, 53 (1925), 181–207 | DOI | MR

[18] Schiff J. L., Normal families, Springer-Verlag, New York, 1993 | MR | Zbl

[19] Toda N., Zinno T., “On Julia's exceptional functions”, Proc. Jpn. Acad., 42 (1966), 1120–1121 | DOI | MR | Zbl

[20] Toda N., “Sur les directions de Julia et de Borel des fonctions algebroides”, Nagoya Math. J., 34 (1969), 1–23 | DOI | MR | Zbl

[21] Yosida K., “On a class $(A)$ of meromorphic functions”, Proc. Phys.-Math. Soc. Jpn., 16 (1934), 227–235

[22] Zinno T., “Some properties of Julia's exceptional functions and an example of Julia's exceptional functions with Julia's direction”, Ann. Acad. Sci. Fenn., Ser. AI., 464 (1970) | MR | Zbl