Approximation of the Lebesgue Constant of a Lagrange Polynomial by a Logarithmic Function with Shifted Argument
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Complex analysis, Tome 153 (2018), pp. 151-157

Voir la notice de l'article provenant de la source Math-Net.Ru

Well-known two-sided estimates for the Lebesgue constants of two classical trigonometric interpolation Lagrange polynomials are improved. Approximations of these Lebesgue constants are based on logarithmic functions with shifted arguments.
Mots-clés : Lagrange interpolation polynomial, Lebesgue constant
Keywords: remainder term, approximation by logarithmic functions, extremal problem, best approximation element.
@article{INTO_2018_153_a11,
     author = {I. A. Shakirov},
     title = {Approximation of the {Lebesgue} {Constant} of a {Lagrange} {Polynomial} by a {Logarithmic} {Function} with {Shifted} {Argument}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {151--157},
     publisher = {mathdoc},
     volume = {153},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_153_a11/}
}
TY  - JOUR
AU  - I. A. Shakirov
TI  - Approximation of the Lebesgue Constant of a Lagrange Polynomial by a Logarithmic Function with Shifted Argument
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 151
EP  - 157
VL  - 153
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_153_a11/
LA  - ru
ID  - INTO_2018_153_a11
ER  - 
%0 Journal Article
%A I. A. Shakirov
%T Approximation of the Lebesgue Constant of a Lagrange Polynomial by a Logarithmic Function with Shifted Argument
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 151-157
%V 153
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_153_a11/
%G ru
%F INTO_2018_153_a11
I. A. Shakirov. Approximation of the Lebesgue Constant of a Lagrange Polynomial by a Logarithmic Function with Shifted Argument. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Complex analysis, Tome 153 (2018), pp. 151-157. http://geodesic.mathdoc.fr/item/INTO_2018_153_a11/