Approximation of the Lebesgue Constant of a Lagrange Polynomial by a Logarithmic Function with Shifted Argument
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Complex analysis, Tome 153 (2018), pp. 151-157.

Voir la notice de l'article provenant de la source Math-Net.Ru

Well-known two-sided estimates for the Lebesgue constants of two classical trigonometric interpolation Lagrange polynomials are improved. Approximations of these Lebesgue constants are based on logarithmic functions with shifted arguments.
Mots-clés : Lagrange interpolation polynomial, Lebesgue constant
Keywords: remainder term, approximation by logarithmic functions, extremal problem, best approximation element.
@article{INTO_2018_153_a11,
     author = {I. A. Shakirov},
     title = {Approximation of the {Lebesgue} {Constant} of a {Lagrange} {Polynomial} by a {Logarithmic} {Function} with {Shifted} {Argument}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {151--157},
     publisher = {mathdoc},
     volume = {153},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_153_a11/}
}
TY  - JOUR
AU  - I. A. Shakirov
TI  - Approximation of the Lebesgue Constant of a Lagrange Polynomial by a Logarithmic Function with Shifted Argument
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 151
EP  - 157
VL  - 153
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_153_a11/
LA  - ru
ID  - INTO_2018_153_a11
ER  - 
%0 Journal Article
%A I. A. Shakirov
%T Approximation of the Lebesgue Constant of a Lagrange Polynomial by a Logarithmic Function with Shifted Argument
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 151-157
%V 153
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_153_a11/
%G ru
%F INTO_2018_153_a11
I. A. Shakirov. Approximation of the Lebesgue Constant of a Lagrange Polynomial by a Logarithmic Function with Shifted Argument. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Complex analysis, Tome 153 (2018), pp. 151-157. http://geodesic.mathdoc.fr/item/INTO_2018_153_a11/

[6] Babenko K. I., Osnovy chislennogo analiza, «Regulyarnaya i khaoticheskaya dinamika», NITs, M.-Izhevsk, 2002

[7] Berman D. L., “K voprosu o nailuchshei sisteme uzlov parabolicheskoi interpolyatsii”, Izv. vuzov. Mat., 4 (35) (1963), 20–25 | Zbl

[8] Gabdulkhaev B. G., Optimalnye approksimatsii reshenii lineinykh zadach, Izd-vo Kazan. un-ta, Kazan, 1980 | MR

[9] Goncharov V. L., Teoriya interpolirovaniya i priblizheniya funktsii, GTTI, M.-L., 1934 | MR

[10] Zigmund A., Trigonometricheskie ryady, v. 2, Mir, M., 1965

[11] Ivanov V. V., Teoriya priblizhennykh metodov i ee primenenie k chislennomu resheniyu singulyarnykh integralnykh uravnenii, Naukova dumka, Kiev, 1968

[12] Korneichuk N. P., Ekstremalnye zadachi teorii priblizheniya, Nauka, M., 1976 | MR

[13] Natanson I. P., Konstruktivnaya teoriya funktsii, Gostekhizdat, M.-L., 1949 | MR

[14] Shakirov I. A., “O vliyanii vybora uzlov lagranzhevoi interpolyatsii na tochnye i priblizhennye znacheniya konstant Lebega”, Sib. mat. zh., 55:6 (2014), 1404–1423 | MR | Zbl

[15] Shakirov I. A., “O predelnom znachenii ostatochnogo chlena konstanty Lebega, sootvetstvuyuschei trigonometricheskomu polinomu Lagranzha”, Izv. Sarat. un-ta. Nov. ser. Ser. Mat. Mekh. Informatika, 16:3 (2016), 302–310 | MR

[16] Shakirov I. A., Prikhodov I. O., “O konstante Lebega polinoma Lagranzha”, Aktualnye napravleniya nauchnykh issledovanii XIX veka: teoriya i praktika, Molodezhnyi forum: tekhnicheskie i matematicheskie nauki (9–12 noyabrya 2015 g.), v. 8, VGLTU im. G. F. Morozova, Voronezh, 2015, 448–452

[17] Brutman L., “Lebesgue functions for polynomial interpolation. A survey”, Ann. Numer. Math., 4 (1997), 111–127 | MR | Zbl

[18] Gunttner R., “Evaluation of Lebesgue constants”, SIAM J. Numer. Anal., 17:4 (1980), 512–520 | DOI | MR | Zbl

[19] Rivlin T., “The Lebesgue constants for polynomial interpolation”, Functional Analysis and Its Applications, eds. H. C. Garnier et al., Springer-Verlag, Berlin, 1974, 422–437 | DOI | MR

[20] Vertesi P., “Optimal Lebesgue constants for Lagrange interpolation”, SIAM J. Numer. Anal., 27 (1990), 1322–1331 | DOI | MR | Zbl