Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2018_153_a11, author = {I. A. Shakirov}, title = {Approximation of the {Lebesgue} {Constant} of a {Lagrange} {Polynomial} by a {Logarithmic} {Function} with {Shifted} {Argument}}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {151--157}, publisher = {mathdoc}, volume = {153}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2018_153_a11/} }
TY - JOUR AU - I. A. Shakirov TI - Approximation of the Lebesgue Constant of a Lagrange Polynomial by a Logarithmic Function with Shifted Argument JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2018 SP - 151 EP - 157 VL - 153 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2018_153_a11/ LA - ru ID - INTO_2018_153_a11 ER -
%0 Journal Article %A I. A. Shakirov %T Approximation of the Lebesgue Constant of a Lagrange Polynomial by a Logarithmic Function with Shifted Argument %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2018 %P 151-157 %V 153 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2018_153_a11/ %G ru %F INTO_2018_153_a11
I. A. Shakirov. Approximation of the Lebesgue Constant of a Lagrange Polynomial by a Logarithmic Function with Shifted Argument. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Complex analysis, Tome 153 (2018), pp. 151-157. http://geodesic.mathdoc.fr/item/INTO_2018_153_a11/
[6] Babenko K. I., Osnovy chislennogo analiza, «Regulyarnaya i khaoticheskaya dinamika», NITs, M.-Izhevsk, 2002
[7] Berman D. L., “K voprosu o nailuchshei sisteme uzlov parabolicheskoi interpolyatsii”, Izv. vuzov. Mat., 4 (35) (1963), 20–25 | Zbl
[8] Gabdulkhaev B. G., Optimalnye approksimatsii reshenii lineinykh zadach, Izd-vo Kazan. un-ta, Kazan, 1980 | MR
[9] Goncharov V. L., Teoriya interpolirovaniya i priblizheniya funktsii, GTTI, M.-L., 1934 | MR
[10] Zigmund A., Trigonometricheskie ryady, v. 2, Mir, M., 1965
[11] Ivanov V. V., Teoriya priblizhennykh metodov i ee primenenie k chislennomu resheniyu singulyarnykh integralnykh uravnenii, Naukova dumka, Kiev, 1968
[12] Korneichuk N. P., Ekstremalnye zadachi teorii priblizheniya, Nauka, M., 1976 | MR
[13] Natanson I. P., Konstruktivnaya teoriya funktsii, Gostekhizdat, M.-L., 1949 | MR
[14] Shakirov I. A., “O vliyanii vybora uzlov lagranzhevoi interpolyatsii na tochnye i priblizhennye znacheniya konstant Lebega”, Sib. mat. zh., 55:6 (2014), 1404–1423 | MR | Zbl
[15] Shakirov I. A., “O predelnom znachenii ostatochnogo chlena konstanty Lebega, sootvetstvuyuschei trigonometricheskomu polinomu Lagranzha”, Izv. Sarat. un-ta. Nov. ser. Ser. Mat. Mekh. Informatika, 16:3 (2016), 302–310 | MR
[16] Shakirov I. A., Prikhodov I. O., “O konstante Lebega polinoma Lagranzha”, Aktualnye napravleniya nauchnykh issledovanii XIX veka: teoriya i praktika, Molodezhnyi forum: tekhnicheskie i matematicheskie nauki (9–12 noyabrya 2015 g.), v. 8, VGLTU im. G. F. Morozova, Voronezh, 2015, 448–452
[17] Brutman L., “Lebesgue functions for polynomial interpolation. A survey”, Ann. Numer. Math., 4 (1997), 111–127 | MR | Zbl
[18] Gunttner R., “Evaluation of Lebesgue constants”, SIAM J. Numer. Anal., 17:4 (1980), 512–520 | DOI | MR | Zbl
[19] Rivlin T., “The Lebesgue constants for polynomial interpolation”, Functional Analysis and Its Applications, eds. H. C. Garnier et al., Springer-Verlag, Berlin, 1974, 422–437 | DOI | MR
[20] Vertesi P., “Optimal Lebesgue constants for Lagrange interpolation”, SIAM J. Numer. Anal., 27 (1990), 1322–1331 | DOI | MR | Zbl