Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2018_153_a10, author = {A. Kh. Fatykhov and P. L. Shabalin}, title = {Inhomogeneous {Hilbert} {Boundary-Value} {Problem} with a {Finite} {Number} of {Second-Type} {Singularity} {Points}}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {143--150}, publisher = {mathdoc}, volume = {153}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2018_153_a10/} }
TY - JOUR AU - A. Kh. Fatykhov AU - P. L. Shabalin TI - Inhomogeneous Hilbert Boundary-Value Problem with a Finite Number of Second-Type Singularity Points JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2018 SP - 143 EP - 150 VL - 153 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2018_153_a10/ LA - ru ID - INTO_2018_153_a10 ER -
%0 Journal Article %A A. Kh. Fatykhov %A P. L. Shabalin %T Inhomogeneous Hilbert Boundary-Value Problem with a Finite Number of Second-Type Singularity Points %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2018 %P 143-150 %V 153 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2018_153_a10/ %G ru %F INTO_2018_153_a10
A. Kh. Fatykhov; P. L. Shabalin. Inhomogeneous Hilbert Boundary-Value Problem with a Finite Number of Second-Type Singularity Points. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Complex analysis, Tome 153 (2018), pp. 143-150. http://geodesic.mathdoc.fr/item/INTO_2018_153_a10/
[1] Alekhno A. G., “Kraevaya zadacha Rimana s beskonechnym indeksom v sluchae mnogostoronnego zavikhreniya”, Dokl. AN BSSR, 25:8 (1981), 681–684 | MR | Zbl
[2] Alekhno A. G., “Kraevaya zadacha Gilberta s beskonechnym indeksom logarifmicheskogo poryadka”, Dokl. NAN Belarusi, 53:2 (2009), 5–10 | MR | Zbl
[3] Bezrodnykh S. I., Vlasov V. I., “Zadacha Rimana—Gilberta v slozhnoi oblasti dlya modeli magnitnogo peresoedineniya v plazme”, Zh. vychisl. mat. mat. fiz., 42:3 (2002), 277–312 | MR | Zbl
[4] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977
[5] Govorov N. V., Kraevaya zadacha Rimana s beskonechnym indeksom, Nauka, M., 1986
[6] Gurvits A., Kurant R., Teoriya funktsii, Nauka, M., 1968
[7] Levin B. Ya., Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956
[8] Monakhov V. N., Semenko E. V., “Kraevye zadachi s beskonechnym indeksom v prostranstvakh Khardi”, Dokl. AN SSSR, 291:3 (1986), 544–547 | MR
[9] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968 | MR
[10] Sabitov I. Kh., “Ob odnoi granichnoi zadache teorii funktsii”, Izv. otd. geol.-khim. i tekhn. nauk AN Tadzh. SSR, 4:6 (1961), 3–10
[11] Salimov R. B., Shabalin P. L., Kraevaya zadacha Gilberta teorii analiticheskikh funktsii i ee prilozheniya, Izd-vo Kazansk. mat. o-va, Kazan, 2005
[12] Salimov R. B., Shabalin P. L., “Zadacha Gilberta. Sluchai beskonechnogo mnozhestva tochek razryva koeffitsientov”, Sib. mat. zh., 49:4 (2008), 898–915 | MR | Zbl
[13] Sandrygailo I. E., “O kraevoi zadache Gilberta s beskonechnym indeksom dlya poluploskosti”, Izv. AN BSSR. Ser. fiz.-mat., 6 (1974), 16–23 | MR
[14] Sevruk A. B., “Odnorodnaya kraevaya zadacha Gilberta s beskonechnym indeksom dlya kusochno analiticheskikh funktsii”, Vestnik BGU. Ser. 1, 1 (2010), 76–81 | MR | Zbl
[15] Tolochko M. E., “O kraevoi zadache Rimana s beskonechnym indeksom dlya poluploskosti”, Izv. AN BSSR. Ser. fiz.-mat., 4 (1969), 52–59 | MR | Zbl
[16] Shabalin P. L., “Odin sluchai zadachi Gilberta s osobennostyami koeffitsientov”, Izv. Sarat. un-ta. Nov. ser. Ser. Mat. Mekh. Informatika, 9:1 (2009), 58–68 | MR
[17] Salimov R. B., Fatykhov A. Kh., Shabalin P. L., “Homogeneous Hilbert boundary value problem with several points of turbulence”, Lobachevskii J. Math., 38:3 (2017), 414–419 | DOI | MR | Zbl
[18] Salimov R., Shabalin P., “Solvability of the Riemann–Hilbert boundary-value problem with a two-side curling at infinity point of order less than 1”, Complex Var. Ell. Equ., 59:12 (2014), 1739–1757 | DOI | MR | Zbl