Inhomogeneous Hilbert Boundary-Value Problem with a Finite Number of Second-Type Singularity Points
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Complex analysis, Tome 153 (2018), pp. 143-150.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we describe the inhomogeneous Hilbert boundary-value problem of the theory of analytic functions with an infinite index and a boundary condition for a half-plane. The coefficients of the boundary condition are Hölder-continuous everywhere except for a finite number of singular points at which the argument of the coefficient function has second-type discontinuities (of a power order with exponent $1$). We obtain formulas for the general solution of the inhomogeneous problem and discuss the existence and uniqueness of the solution. The study is based on the theory of entire functions and the geometric theory of functions of a complex variable.
Keywords: Hilbert problem, Phragmén–Lindelöf principle, infinite index, entire functions.
@article{INTO_2018_153_a10,
     author = {A. Kh. Fatykhov and P. L. Shabalin},
     title = {Inhomogeneous {Hilbert} {Boundary-Value} {Problem} with a {Finite} {Number} of {Second-Type} {Singularity} {Points}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {143--150},
     publisher = {mathdoc},
     volume = {153},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_153_a10/}
}
TY  - JOUR
AU  - A. Kh. Fatykhov
AU  - P. L. Shabalin
TI  - Inhomogeneous Hilbert Boundary-Value Problem with a Finite Number of Second-Type Singularity Points
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 143
EP  - 150
VL  - 153
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_153_a10/
LA  - ru
ID  - INTO_2018_153_a10
ER  - 
%0 Journal Article
%A A. Kh. Fatykhov
%A P. L. Shabalin
%T Inhomogeneous Hilbert Boundary-Value Problem with a Finite Number of Second-Type Singularity Points
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 143-150
%V 153
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_153_a10/
%G ru
%F INTO_2018_153_a10
A. Kh. Fatykhov; P. L. Shabalin. Inhomogeneous Hilbert Boundary-Value Problem with a Finite Number of Second-Type Singularity Points. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Complex analysis, Tome 153 (2018), pp. 143-150. http://geodesic.mathdoc.fr/item/INTO_2018_153_a10/

[1] Alekhno A. G., “Kraevaya zadacha Rimana s beskonechnym indeksom v sluchae mnogostoronnego zavikhreniya”, Dokl. AN BSSR, 25:8 (1981), 681–684 | MR | Zbl

[2] Alekhno A. G., “Kraevaya zadacha Gilberta s beskonechnym indeksom logarifmicheskogo poryadka”, Dokl. NAN Belarusi, 53:2 (2009), 5–10 | MR | Zbl

[3] Bezrodnykh S. I., Vlasov V. I., “Zadacha Rimana—Gilberta v slozhnoi oblasti dlya modeli magnitnogo peresoedineniya v plazme”, Zh. vychisl. mat. mat. fiz., 42:3 (2002), 277–312 | MR | Zbl

[4] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977

[5] Govorov N. V., Kraevaya zadacha Rimana s beskonechnym indeksom, Nauka, M., 1986

[6] Gurvits A., Kurant R., Teoriya funktsii, Nauka, M., 1968

[7] Levin B. Ya., Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956

[8] Monakhov V. N., Semenko E. V., “Kraevye zadachi s beskonechnym indeksom v prostranstvakh Khardi”, Dokl. AN SSSR, 291:3 (1986), 544–547 | MR

[9] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968 | MR

[10] Sabitov I. Kh., “Ob odnoi granichnoi zadache teorii funktsii”, Izv. otd. geol.-khim. i tekhn. nauk AN Tadzh. SSR, 4:6 (1961), 3–10

[11] Salimov R. B., Shabalin P. L., Kraevaya zadacha Gilberta teorii analiticheskikh funktsii i ee prilozheniya, Izd-vo Kazansk. mat. o-va, Kazan, 2005

[12] Salimov R. B., Shabalin P. L., “Zadacha Gilberta. Sluchai beskonechnogo mnozhestva tochek razryva koeffitsientov”, Sib. mat. zh., 49:4 (2008), 898–915 | MR | Zbl

[13] Sandrygailo I. E., “O kraevoi zadache Gilberta s beskonechnym indeksom dlya poluploskosti”, Izv. AN BSSR. Ser. fiz.-mat., 6 (1974), 16–23 | MR

[14] Sevruk A. B., “Odnorodnaya kraevaya zadacha Gilberta s beskonechnym indeksom dlya kusochno analiticheskikh funktsii”, Vestnik BGU. Ser. 1, 1 (2010), 76–81 | MR | Zbl

[15] Tolochko M. E., “O kraevoi zadache Rimana s beskonechnym indeksom dlya poluploskosti”, Izv. AN BSSR. Ser. fiz.-mat., 4 (1969), 52–59 | MR | Zbl

[16] Shabalin P. L., “Odin sluchai zadachi Gilberta s osobennostyami koeffitsientov”, Izv. Sarat. un-ta. Nov. ser. Ser. Mat. Mekh. Informatika, 9:1 (2009), 58–68 | MR

[17] Salimov R. B., Fatykhov A. Kh., Shabalin P. L., “Homogeneous Hilbert boundary value problem with several points of turbulence”, Lobachevskii J. Math., 38:3 (2017), 414–419 | DOI | MR | Zbl

[18] Salimov R., Shabalin P., “Solvability of the Riemann–Hilbert boundary-value problem with a two-side curling at infinity point of order less than 1”, Complex Var. Ell. Equ., 59:12 (2014), 1739–1757 | DOI | MR | Zbl