Representing Systems of Exponentials in Weight Subspaces $H(D)$
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Complex analysis, Tome 153 (2018), pp. 13-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, weight subspaces of the space of analytic functions on a bounded convex domain of the complex plane are considered. Descriptions of spaces that are strongly conjugate to inductive and projective limits of uniformly weight spaces of analytic functions in a bounded convex domain $D\subset \mathbb C$ are obtained in terms of the Fourier–Laplace transformation. For each normed uniformly weight space $H(D,u)$, the smallest linear space $\mathcal H_i(D,u)$ that contains $H(D,u)$ and is invariant under differentiation and the largest linear space $\mathcal H_p(D,u)$ that is contained in $H(D,u)$ and is invariant under differentiation are constructed. Natural locally convex topologies are introduced on these spaces and a description of strongly conjugate spaces in terms of the Fourier–Laplace transformation is presented. The existence of representing exponential systems in the space $\mathcal H_i(D,u)$ is proved.
Keywords: analytic functions, integer functions, series of exponentials, sufficient sets.
@article{INTO_2018_153_a1,
     author = {R. A. Bashmakov and K. P. Isaev and R. S. Yulmukhametov},
     title = {Representing {Systems} of {Exponentials} in {Weight} {Subspaces} $H(D)$},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {13--28},
     publisher = {mathdoc},
     volume = {153},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_153_a1/}
}
TY  - JOUR
AU  - R. A. Bashmakov
AU  - K. P. Isaev
AU  - R. S. Yulmukhametov
TI  - Representing Systems of Exponentials in Weight Subspaces $H(D)$
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 13
EP  - 28
VL  - 153
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_153_a1/
LA  - ru
ID  - INTO_2018_153_a1
ER  - 
%0 Journal Article
%A R. A. Bashmakov
%A K. P. Isaev
%A R. S. Yulmukhametov
%T Representing Systems of Exponentials in Weight Subspaces $H(D)$
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 13-28
%V 153
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_153_a1/
%G ru
%F INTO_2018_153_a1
R. A. Bashmakov; K. P. Isaev; R. S. Yulmukhametov. Representing Systems of Exponentials in Weight Subspaces $H(D)$. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Complex analysis, Tome 153 (2018), pp. 13-28. http://geodesic.mathdoc.fr/item/INTO_2018_153_a1/

[8] Abuzyarova N. F., Yulmukhametov R. S., “Sopryazhennye prostranstva k vesovym prostranstvam analiticheskikh funktsii”, Sib. mat. zh., 42:1 (2001), 3–17 | MR | Zbl

[9] Isaev K. P., Trunov K. V., Yulmukhametov R. S., “Predstavlenie ryadami eksponent funktsii v lokalno vypuklykh podprostranstvakh $A^\infty (D)$”, Ufim. mat. zh., 9:3 (2017), 50–62

[10] Korobeinik Yu. F., “Predstavlyayuschie sistemy”, Usp. mat. nauk, 36:1 (217) (1981), 73–126 | MR | Zbl

[11] Leontev A. F., Ryady eksponent, Nauka, M., 1976 | MR

[12] Napalkov V. V., “O diskretnykh slabodostatochnykh mnozhestvakh v nekotorykh prostranstvakh tselykh funktsii”, Izv. AN SSSR. Ser. mat., 45:5 (1981), 1088–1099 | MR | Zbl

[13] Napalkov V. V., “O sravnenii topologii v nekotorykh prostranstvakh tselykh funktsii”, Dokl. AN SSSR, 264:4 (1982), 827–830 | MR | Zbl

[14] Napalkov V. V., “Prostranstva analiticheskikh funktsii zadannogo rosta vblizi granitsy”, Izv. AN SSSR. Ser. mat., 51:2 (1987), 287–305 | MR | Zbl

[15] Robertson A. P., Robertson V. Dzh., Topologicheskie vektornye prostranstva, Mir, M., 1967 | MR

[16] Khermander L., Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, v. 1, Differentsialnye operatory s postoyannymi koeffitsientami, Mir, M., 1986

[17] Khermander L., Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, v. 2, Teoriya raspredelenii i analiz Fure, Mir, M., 1986

[18] Yulmukhametov R. S., “Dostatochnye mnozhestva v odnom prostranstve tselykh funktsii”, Mat. sb., 116 (158):3 (11) (1981), 427–439 | MR | Zbl

[19] Ehrenpreis L., Fourier analysis in several complex variables, Wiley, N.Y., 1970 | MR | Zbl