Emergence and Decay of $\pi$-Kinks in the Sine-Gordon Model with High-Frequency Pumping
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Mathematical physics, Tome 152 (2018), pp. 53-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the sine-Gordon equation with a high-frequency parametrical pumping and a weak dissipative force. We examine the class of $\pi$-kink-type solutions that are soliton solutions of the nonperturbed sine-Gordon equation. In contrast to stable $2\pi$-kinks, these these solutions are unstable. We prove that the time of decaying of $\pi$-kinks due to small perturbations is proportional to the cube of the inverse period of fast oscillations of the parametrical pumping. We derive a two-time asymptotic expansion of a solution of the boundary-value problem and analyze evolution of a wave packet whose leading term has the form of a $\pi$-kink. Numerical simulations of solutions confirm a good qualitative agreement with asymptotic expansions.
Mots-clés : sine-Gordon equation
Keywords: $\pi$-kink, Kapitsa pendulum, averaging method, asymptotic expansion, stability of solitons.
@article{INTO_2018_152_a5,
     author = {O. M. Kiselev and V. Yu. Novokshenov},
     title = {Emergence and {Decay} of $\pi${-Kinks} in the {Sine-Gordon} {Model} with {High-Frequency} {Pumping}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {53--66},
     publisher = {mathdoc},
     volume = {152},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_152_a5/}
}
TY  - JOUR
AU  - O. M. Kiselev
AU  - V. Yu. Novokshenov
TI  - Emergence and Decay of $\pi$-Kinks in the Sine-Gordon Model with High-Frequency Pumping
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 53
EP  - 66
VL  - 152
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_152_a5/
LA  - ru
ID  - INTO_2018_152_a5
ER  - 
%0 Journal Article
%A O. M. Kiselev
%A V. Yu. Novokshenov
%T Emergence and Decay of $\pi$-Kinks in the Sine-Gordon Model with High-Frequency Pumping
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 53-66
%V 152
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_152_a5/
%G ru
%F INTO_2018_152_a5
O. M. Kiselev; V. Yu. Novokshenov. Emergence and Decay of $\pi$-Kinks in the Sine-Gordon Model with High-Frequency Pumping. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Mathematical physics, Tome 152 (2018), pp. 53-66. http://geodesic.mathdoc.fr/item/INTO_2018_152_a5/

[1] Bogolyubov N. N., Mitropolskii Yu. A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Fizmatlit, M., 1958 | MR

[2] Zaitsev V. F., Polyanin A. D., Spravochnik po differentsialnym uravneniyam s chastnymi proizvodnymi pervogo poryadka, Fizmatlit, M., 2003

[3] Kapitsa P. L., “Dinamicheskaya ustoichivost mayatnika pri koleblyuscheisya tochke podvesa”, ZhETF, 21 (1951), 588–597 | MR

[4] Kiselev O. M., “Ostsillyatsii okolo separatrisy v uravnenii Dyuffinga”, Tr. In-ta mat. mekh. UNTs RAN, 18:2 (2012), 141–153

[5] Kiselev O. M., Novokshenov V. Yu., “Avtorezonans v modeli generatora teragertsevykh voln”, Tr. In-ta mat. mekh. UNTs RAN, 23:2 (2017), 117–132

[6] Krylov N. M., Bogolyubov N. N., Vvedenie v nelineinuyu mekhaniku, Izd-vo AN USSR, Kiev, 1937

[7] Kuzmak G. A., “Asimptoticheskie resheniya nelineinykh differentsialnykh uravnenii vtorogo poryadka s peremennymi koeffitsientami”, Prikl. mat. mekh., 23 (1959), 515–526 | Zbl

[8] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971

[9] Landau L. D., Lifshits E. M., Mekhanika, Nauka, M., 1988 | MR

[10] Samoilenko A. M., Polesya I. V., “Suschestvovanie separatrisnykh poverkhnostei u sistem v standartnoi forme”, Differ. uravn., 11:10 (1975), 1827-–1831 | MR

[11] Chirikov B. V., Nelineinyi rezonans, Izd-vo NGU, Novosibirsk, 1977

[12] Bulaevskii L. N., Koshelev A. E., “Radiation due to Josephson oscillations in layered superconductors”, Phys. Rev. Lett., 99 (2007), 057002 | DOI

[13] Butikov E. I., “An improved criterion for Kapitza’s pendulum stability”, J. Phys. A: Math. Theor., 44 (2011), 295202 | DOI | MR | Zbl

[14] Glebov S. G., Kiselev O. M., Tarkhanov N., Nonlinear equations with small parameter, De Gruyter, Berlin–New York, 2017 | MR | Zbl

[15] Hu X., Lin S., “Three-dimensional phase-kink state in a thick stack of Josephson junctions and terahertz radiation”, Phys. Rev. B., 78:13 (2008), 134510 | DOI

[16] Kivshar Yu. S., Gronbech-Jensen N., Samuelsen M. R., “Pi-kinks in a parametrically driven sine-Gordon chain”, Phys. Rev. B., 45 (1992), 7789–7794 | DOI

[17] Revin L. S., Pankratov A. L., “Spectral and power properties of inline long Josephson junctions”, Phys. Rev. B., 86 (2012), 054501 | DOI

[18] Sobolev A. S., Pankratov A. L., Mygindc J., “Numerical simulation of the self-pumped long Josephson junction using a modified sine-Gordon model”, Phys. C., 435 (2006), 112-113 | DOI

[19] Zharnitsky V., Mitkov I., Levi M., “Parametrically forced sine-Gordon equation and domain walls dynamics in ferromagnets”, Phys. Rev. B., 57 (1998), 5033 | DOI

[20] Zharnitsky V., Mitkov I., Gronbech-Jensen N., “$\pi$-Kinks in strongly ac driven sine-Gordon systems”, Phys. Rev. E., 58 (1998), R52–R55 | DOI