Voir la notice du chapitre de livre
@article{INTO_2018_151_a9,
author = {L. E. Fedichkin and F. P. Meshchaninov},
title = {Analysis and {Applications} of {Quantum} {Walks}},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {105--116},
year = {2018},
volume = {151},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2018_151_a9/}
}
TY - JOUR AU - L. E. Fedichkin AU - F. P. Meshchaninov TI - Analysis and Applications of Quantum Walks JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2018 SP - 105 EP - 116 VL - 151 UR - http://geodesic.mathdoc.fr/item/INTO_2018_151_a9/ LA - ru ID - INTO_2018_151_a9 ER -
L. E. Fedichkin; F. P. Meshchaninov. Analysis and Applications of Quantum Walks. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Quantum probability, Tome 151 (2018), pp. 105-116. http://geodesic.mathdoc.fr/item/INTO_2018_151_a9/
[1] Aaronson S., Ambainis A., “Quantum search of spatial regions”, Proc.44 Annual IEEE Symp. Foundations of Computer Science., 2003, 200–209 | MR
[2] Alagic G., Russell A., “Decoherence in quantum walks on thehypercube”, Phys. Rev. A., 72:6 (2005), 062304 | DOI
[3] Ambainis A. et al., “Search by quantum walks on two-dimensional grid without amplitude amplification”, Conf. on Quantum Computation, Communication, and Cryptography, Springer-Verlag, Berlin–Heidelberg, 2012, 87–97 | MR
[4] Ambainis A., Bach E., Nayak A., Vishwanath. A. Watrous J., “One-dimensional quantum walks”, Conf. Proc. of the Annual ACM Symposium on Theory of Computing | MR
[5] Ambainis A., Kempe J., Rivosh A., “Coins make quantum walks faster”, Proc. SODA 2005, 2005, 1099–1108 | MR | Zbl
[6] Beals R. et al., “Quantum lower bounds by polynomials”, J. ACM, 48:4 (2001), 778–797 | DOI | MR | Zbl
[7] Briegel H. J., De las Cuevas G., “Projective simulation for artificial intelligence”, Sci. Repts., 2 (2012), 400. | DOI
[8] Childs A. M., Goldstone J., “Spatial search by quantum walk”, Phys.Rev. A., 70:2 (2004), 022314 | DOI | MR
[9] Childs A. M., Farhi E., Gutmann S., “An example of the difference between quantum and classical random walks”, Quantum Inform. Process., 1:1 (2002), 35–43 | DOI | MR | Zbl
[10] Fedichkin L., Meshchaninov F. Quantum-classical crossover in quantum walks mixing time, Proc. Int. Conf. on Micro- and Nano-Electronics, 2016, 2016, 102242M-6
[11] Fedichkin L., Solenov D., Tamon C., “Mixing and decoherence in quantumwalks on cycles”, Quantum Inform. Comput., 6:3 (2006), 263–276 | MR | Zbl
[12] Kendon V., Tregenna B., “Decoherence can be useful in quantum walks”, Phys. Rev. A., 67:4 (2003), 042315 | DOI | MR
[13] Melnikov A. A., Fedichkin L. E., “Quantum walks of interacting fermions on a cycle graph”, Sci. Repts., 6 (2016), 34226 | DOI
[14] Melnikov A. A., Fedichkin L. E., “Continuous-time quantum walk of two interacting fermions on a cycle graph”, Proc. Int. Conf. on Micro- and Nano-Electronics, 2016, 2016, 102242L-6
[15] Richter P. C., “Quantum speedup of classical mixing processes”, Phys.Rev. A., 76:4 (2007), 042306 | DOI
[16] Solenov D., Fedichkin L., “Continuous-time quantum walks on a cycle graph”, Phys. Rev. A., 73:1 (2006), 012313 | DOI | MR
[17] Solenov D., Fedichkin L., “Nonunitary quantum walks on hypercycles”, Phys. Rev. A., 73:1 (2006), 012308 | DOI | MR