Asymmetry of Locally Available and Locally Transmitted Information in Thermal Two-Qubit States
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Quantum probability, Tome 151 (2018), pp. 45-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, we consider thermal states of two particles with spin $1/2$ (qubits) located in an inhomogeneous transverse magnetic field and interacting according to the Heisenberg $XY$-model. We introduce the concepts of the magnitude and direction of asymmetry of the entropy of a state and the magnitude and asymmetry of a flow of locally transmitted information. We show that for the system considered, the asymmetry of entropy is directed from the particle in a weaker magnetic field toward the particle in a stronger magnetic field, and this direction coincides with the direction of the excess flux of locally transmitted information. We also demonstrate that this asymmetry direction is consistent with the direction of the excess flow of locally available information: measurements over the particle in a weaker magnetic field provide a greater level of locally available information than measurements over the particle in a stronger magnetic field.
Keywords: quantum discord, $XY$-Heisenberg interaction, locally available information.
@article{INTO_2018_151_a4,
     author = {E. O. Kiktenko},
     title = {Asymmetry of {Locally} {Available} and {Locally} {Transmitted} {Information} in {Thermal} {Two-Qubit} {States}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {45--61},
     publisher = {mathdoc},
     volume = {151},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_151_a4/}
}
TY  - JOUR
AU  - E. O. Kiktenko
TI  - Asymmetry of Locally Available and Locally Transmitted Information in Thermal Two-Qubit States
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 45
EP  - 61
VL  - 151
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_151_a4/
LA  - ru
ID  - INTO_2018_151_a4
ER  - 
%0 Journal Article
%A E. O. Kiktenko
%T Asymmetry of Locally Available and Locally Transmitted Information in Thermal Two-Qubit States
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 45-61
%V 151
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_151_a4/
%G ru
%F INTO_2018_151_a4
E. O. Kiktenko. Asymmetry of Locally Available and Locally Transmitted Information in Thermal Two-Qubit States. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Quantum probability, Tome 151 (2018), pp. 45-61. http://geodesic.mathdoc.fr/item/INTO_2018_151_a4/

[1] Borisov L. A., Orlov Yu. N., Sakbaev V. Zh., Formuly Feinmana dlya usredneniya polugrupp, porozhdaemykh operatorami tipa Shredingera, Preprint IPM im. M. V. Keldysha No 057, 2015

[2] Veil A., Integrirovanie v topologicheskikh gruppakh i ego primenenie, IL, M., 1950

[3] Vershik A. M., “Suschestvuet li mera Lebega v beskonechnomernom prostranstve?”, Tr. Mat. in-ta RAN im. V. A. Steklova., 259 (2007), 256–281 | Zbl

[4] Garsia-Narankho L. S., Montaldi Dzh., Smolyanov O. G., “Preobrazovaniya integralov Feinmana po traektoriyam i obobschennye plotnosti psevdomer Feinmana”, Dokl. RAN., 468:4 (2016), 367–371 | DOI | MR

[5] Orlov Yu. N., Sakbaev V. Zh., Smolyanov O. G., “Sluchainye neogranichennye operatory i formuly Feinmana”, Izv. RAN., 80:6 (2016), 141–172 | MR | Zbl

[6] Sakbaev V. Zh., “Mery na beskonechnomernykh prostranstvakh, invariantnye otnositelno sdvigov”, Tr. MFTI, 8:2 (2016), 134–-141

[7] Sakbaev V. Zh., “Usrednenie sluchainykh bluzhdanii i mery na gilbertovom prostranstve, invariantnye otnositelno sdviga”, Teor. mat. fiz., 191:3 (2017), 473-502 | DOI | MR | Zbl

[8] Smolyanov O. G., Shavgulidze E. T., Kontinualnye integraly, URSS, M., 2015

[9] Baker R., “«Lebesgue measure» on $\mathbb{R}^{\infty }$”, Proc. Am. Math. Soc., 113:4 (1991), 1023–1029 | MR | Zbl