On Stabilization of Solutions of the Cauchy Problem for Fractional Diffusion-Wave Equation
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Actual Problems of Applied Mathematics and Physics,” Kabardino-Balkaria, Nalchik, May 17–21, 2017, Tome 149 (2018), pp. 84-94
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Problems on the asymptotic behavior of solutions to the Cauchy problems for a fractional diffusion-wave equation for large values of time are examined. Sufficient conditions of stabilization in the class of rapidly growing functions and necessary and sufficient conditions of stabilization to zero in the case of asymptotically nonnegative initial functions are found.
Mots-clés : fractional diffusion-wave equation
Keywords: stabilization, Cauchy problem, fractional derivative, Dzhrbashyan–Nersesyan operator.
@article{INTO_2018_149_a9,
     author = {A. V. Pskhu},
     title = {On {Stabilization} of {Solutions} of the {Cauchy} {Problem} for {Fractional} {Diffusion-Wave} {Equation}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {84--94},
     year = {2018},
     volume = {149},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_149_a9/}
}
TY  - JOUR
AU  - A. V. Pskhu
TI  - On Stabilization of Solutions of the Cauchy Problem for Fractional Diffusion-Wave Equation
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 84
EP  - 94
VL  - 149
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_149_a9/
LA  - ru
ID  - INTO_2018_149_a9
ER  - 
%0 Journal Article
%A A. V. Pskhu
%T On Stabilization of Solutions of the Cauchy Problem for Fractional Diffusion-Wave Equation
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 84-94
%V 149
%U http://geodesic.mathdoc.fr/item/INTO_2018_149_a9/
%G ru
%F INTO_2018_149_a9
A. V. Pskhu. On Stabilization of Solutions of the Cauchy Problem for Fractional Diffusion-Wave Equation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Actual Problems of Applied Mathematics and Physics,” Kabardino-Balkaria, Nalchik, May 17–21, 2017, Tome 149 (2018), pp. 84-94. http://geodesic.mathdoc.fr/item/INTO_2018_149_a9/

[1] Volpert A. I., “O rasprostranenii voln, opisyvaemykh nelineinymi parabolicheskimi uravneniyami”, Izbrannye trudy. Differentsialnye uravneniya i teoriya veroyatnostei, Nauka, M., 1987, 333–358

[2] Guschin A. K., Mikhailov V. P., Mikhailov Yu. A., “O ravnomernoi stabilizatsii resheniya vtoroi smeshannoi zadachi dlya parabolicheskogo uravneniya vtorogo poryadka”, Mat. sb., 128 (170):2 (10) (1985), 147–168 | MR

[3] Denisov V. N., “O stabilizatsii srednikh po vremeni ot resheniya zadachi Koshi dlya parabolicheskogo uravneniya”, Differ. uravn., 24:1 (1988), 44–54 | MR | Zbl

[4] Denisov V. N., “O povedenii reshenii parabolicheskikh uravnenii pri bolshikh znacheniyakh vremeni”, Usp. mat. nauk, 60:4 (2005), 145–212 | DOI | MR | Zbl

[5] Denisov V. N., Zhikov V. V., “O stabilizatsii resheniya zadachi Koshi dlya parabolicheskikh uravnenii”, Mat. zametki, 37:6 (1985), 834–850 | MR | Zbl

[6] Denisov V. N., Repnikov V. D., “O stabilizatsii resheniya zadachi Koshi dlya parabolicheskikh uravnenii”, Differ. uravn., 20:1 (1984), 20–41 | MR | Zbl

[7] Dzhrbashyan M. M., Bagyan R. A., “b integralnykh predstavleniyakh i merakh, assotsiirovannykh s funktsiei Mittag–Lefflera”, Dokl. AN SSSR, 223:6 (1975), 1297–1300 | MR | Zbl

[8] Dzhrbashyan M. M., Nersesyan A. B., “Drobnye proizvodnye i zadachi Koshi dlya differentsialnykh uravnenii drobnogo poryadka”, Izv. AN Arm. SSR. Mat., 3:1 (1968), 3–28 | MR

[9] Drozhzhinov Yu. N., “Stabilizatsiya reshenii obobschennoi zadachi Koshi dlya ultraparabolicheskogo uravneniya”, Izv. AN SSSR. Ser. mat., 33:2 (1969), 368–378 | Zbl

[10] Kolmogorov A. N., Petrovskii I. G., Piskunov N. S., “Issledovanie uravneniya diffuzii, soedinennoi s vozrastaniem kolichestva veschestva, i ego primenenie k odnoi biologicheskoi probleme”, Byull. MGU. Mat. mekh., 1:6 (1937), 1–26

[11] Kochubei A. N., “Diffuziya drobnogo poryadka”, Differ. uravn., 26:4 (1990), 660–670 | MR | Zbl

[12] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003

[13] Pskhu A. V., “Integralnoe preobrazovanie s funktsiei Raita v yadre”, Dokl. Adygskoi (Cherkesskoi) Mezhdunar. AN, 6:1 (2002), 35–47

[14] Pskhu A. V., Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka, M., 2005

[15] Pskhu A. V., “Fundamentalnoe reshenie diffuzionno-volnovogo uravneniya drobnogo poryadka”, Izv. RAN. Ser. mat., 73:2 (2009), 141–182 | DOI | MR | Zbl

[16] Stankovi\symbol{163} B., “O jednoj klasi singularnikh integralnikh jednachina”, Zbornik radova SAN, 43:4 (1955), 81–130 | Zbl

[17] Tarasov V. E., Modeli teoreticheskoi fiziki s integro-differentsirovaniem drobnogo poryadka, In-t komp. issl., M.-Izhevsk, 2011

[18] Tikhonov A. N., “Ob uravnenii teploprovodnosti dlya neskolkikh peremennykh”, Byull. MGU. Mat. mekh., 1:9 (1938), 1–49

[19] Uchaikin V. V., Metod drobnykh proizvodnykh, Artishok, Ulyanovsk, 2008

[20] Atanacković T. M., Pilipović S., Stanković B., Zorica D., Fractional calculus with applications in mechanics, Wiley, London, 2014 | MR

[21] Eidelman S. D., Kochubei A. N., “Cauchy problem for fractional diffusion equations”, J. Differ. Equations, 199:2 (2004), 211–255 | DOI | MR | Zbl

[22] Fujita Ya., “Integrodifferential equation which interpolates the heat equation and the wave equation, I”, Osaka J. Math., 27:2 (1990), 309–321 | MR | Zbl

[23] Fujita Ya., “Integrodifferential equation which interpolates the heat equation and the wave equation, II”, Osaka J. Math., 27:4 (1990), 797–804 | MR | Zbl

[24] Applications of fractional calculus in physics, ed. Hilfer R., World Scientific, Singapore, 2000 | MR | Zbl

[25] Kilbas A. A., Srivastava H. M., Trujillo J. J., “Theory and applications of fractional differential equations”, North-Holland Math. Stud., v. 204, Elsevier, Amsterdam, 2006 | MR | Zbl

[26] Kochubei A. N., “Asymptotic properties of solutions of the fractional diffusion-wave equation”, Fract. Calc. Appl. Anal., 17:3 (2014), 881–896 | DOI | MR | Zbl

[27] Mainardi F., “The fundamental solutions for the fractional diffusion-wave equation”, Appl. Math. Lett., 9:6 (1996), 23–28 | DOI | MR | Zbl

[28] Luchko Yu., Gorenflo R., “Scale-invariant solutions of a partial differential equation of fractional order”, Fract. Calc. Appl. Anal., 1:1 (1998), 63–78 | MR | Zbl

[29] Schneider W. R., Wyss W., “Fractional diffusion and wave equations”, J. Math. Phys., 30:1 (1989), 134–144 | DOI | MR | Zbl

[30] Stanković B., “On the function of E. M. Wright”, Publ. Inst. Math., Nouv. Sér., 10:24 (1970), 113–124 | MR | Zbl

[31] Wright E. M., “On the coefficients of power series having exponential singularities”, J. London Math. Soc., 8:29 (1933), 71–79 | DOI | MR | Zbl

[32] Wright E. M., “The generalized Bessel function of order greater than one”, Quart. J. Math. Oxford Ser., 11:1 (1940), 36–48 | DOI | MR

[33] Wyss W., “The fractional diffusion equation”, J. Math. Phys., 27:11 (1986), 2782–2785 | DOI | MR | Zbl