Optimal Control Problems for Linear Degenerate Fractional Equations
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Actual Problems of Applied Mathematics and Physics,” Kabardino-Balkaria, Nalchik, May 17–21, 2017, Tome 149 (2018), pp. 72-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

Optimal control problems for a linear degenerate evolution equation that is not solvable with respect to the fractional Gerasimov–Caputo derivative are investigated in this paper. Solvability conditions for distributed control problems with various quality functionals are obtained. Abstract results is are applied to the control problem for the system of equations of gravitational-gyroscopic waves.
Keywords: optimal control, degenerate evolution equation, fractional differential equation, Caputo derivative.
@article{INTO_2018_149_a8,
     author = {M. V. Plekhanova},
     title = {Optimal {Control} {Problems} for {Linear} {Degenerate} {Fractional} {Equations}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {72--83},
     publisher = {mathdoc},
     volume = {149},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_149_a8/}
}
TY  - JOUR
AU  - M. V. Plekhanova
TI  - Optimal Control Problems for Linear Degenerate Fractional Equations
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 72
EP  - 83
VL  - 149
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_149_a8/
LA  - ru
ID  - INTO_2018_149_a8
ER  - 
%0 Journal Article
%A M. V. Plekhanova
%T Optimal Control Problems for Linear Degenerate Fractional Equations
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 72-83
%V 149
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_149_a8/
%G ru
%F INTO_2018_149_a8
M. V. Plekhanova. Optimal Control Problems for Linear Degenerate Fractional Equations. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Actual Problems of Applied Mathematics and Physics,” Kabardino-Balkaria, Nalchik, May 17–21, 2017, Tome 149 (2018), pp. 72-83. http://geodesic.mathdoc.fr/item/INTO_2018_149_a8/

[1] Gerasimov A. N., “Obobschenie lineinykh zakonov deformatsii i ikh prilozhenie k zadacham vnutrennego treniya”, Prikl. mat. mekh., 12 (1948), 529–539

[2] Demidenko G. V., Uspenskii S. V., Uravneniya i sistemy, ne razreshennye otnositelno starshei proizvodnoi, Nauchnaya kniga, Novosibirsk, 1998

[3] Plekhanova M. V., “Razreshimost zadach upravleniya dlya vyrozhdennykh evolyutsionnykh uravnenii drobnogo poryadka”, Chelyab. fiz.–mat. zh., 2:1 (2017), 53–66 | MR

[4] Plekhanova M. V., “Silnye resheniya nelineinogo vyrozhdennogo evolyutsionnogo uravneniya drobnogo poryadka”, Sib. zh. chistoi i prikl. mat., 16:3 (2016), 61–74 | MR | Zbl

[5] Pskhu A. V., Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka, M., 2005

[6] Sobolev S. L., “Ob odnoi novoi zadache matematicheskoi fiziki”, Izv. AN SSSR. Ser. mat., 18 (1954), 3–50 | MR | Zbl

[7] Uchaikin V. V., Metod drobnykh proizvodnykh, Artishok, Ulyanovsk, 2008

[8] Fursikov A. V., Optimalnoe upravlenie raspredelennymi sistemami. Teoriya i prilozheniya, Nauchnaya kniga, Novosibirsk, 1999

[9] Agrawal O. P., “A quadratic numerical scheme for fractional optimal control problems”, J. Dynam. Syst. Measurement Control, 130:1 (2008), 011010 | DOI | MR

[10] Bajlekova E. G., Fractional Evolution Equations in Banach Spaces, Ph.D. thesis, Eindhoven Univ. of Technology, Eindhoven, 2001 | MR | Zbl

[11] Caputo M., “Linear model of dissipation whose $Q$ is almost frequancy independent, II”, Geophys. J. Roy. Astronom. Soc., 13 (1967), 529–539 | DOI

[12] Debbouche A., Torres D. F. M., “Sobolev-type fractional dynamic equations and optimal multi-integral controls with fractional nonlocal conditions”, Fract. Calc. Appl. Anal., 18 (2015), 95–121 | DOI | MR | Zbl

[13] Fedorov V. E., Gordievskikh D. M., Plekhanova M. V., “Equations in Banach spaces with a degenerate operator under a fractional derivative”, Differ. Equations, 51:10 (2015), 1360–-1368 | DOI | MR | Zbl

[14] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and applications of fractional differential equations, Elsevier Science Publ., Amsterdam–Boston–Heidelberg, 2006 | MR | Zbl

[15] Plekhanova M. V., “Distributed control problems for a class of degenerate semilinear evolution equations”, J. Comput. Appl. Math., 312 (2017), 39–46 | DOI | MR | Zbl

[16] Plekhanova M. V., “Mixed control problem for the linearized quasi-stationary phase field system of equations”, Mat. Sci. Forum, 845 (2016), 170–173 | DOI

[17] Plekhanova M. V., “Nonlinear equations with degenerate operator at fractional Caputo derivative”, Math. Meth. Appl. Sci., 40:17 (2017), 6138–6146 | DOI | MR | Zbl

[18] Plekhanova M. V., “Sobolev-type equations of time-fractional order with periodical boundary conditions”, Int. Conf. on Analysis and Applied Mathematics (ICAAM 2016). AIP Conf. Proc., 1759 (2016), 020101-1–020101-4

[19] Plekhanova M. V., “Strong solutions of quasilinear equations in Banach spaces not solvable with respect to the highest-order derivative”, Discr. Contin. Dynam. Syst. Ser. S., 9:3 (2016), 833–847 | DOI | MR

[20] Sviridyuk G. A., Fedorov V. E., Linear Sobolev-type equations and degenerate semigroups of operators, VSP, Utrecht–Boston, 2003 | MR | Zbl