Boundary-Value Problem for a Third-Order Hyperbolic Equation Degenerating Inside the Domain with the Aller Operator in the Principal Part
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Actual Problems of Applied Mathematics and Physics,” Kabardino-Balkaria, Nalchik, May 17–21, 2017, Tome 149 (2018), pp. 64-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

Boundary-value problems for a third-order hyperbolic equation degenerating inside the domain with the Aller operator in the principal part are examined. The existence and uniqueness theorem for solutions of the problem is proved.
Keywords: boundary-value problem, third-order hyperbolic equation
Mots-clés : Aller equation.
@article{INTO_2018_149_a7,
     author = {R. Kh. Makaova},
     title = {Boundary-Value {Problem} for a {Third-Order} {Hyperbolic} {Equation} {Degenerating} {Inside} the {Domain} with the {Aller} {Operator} in the {Principal} {Part}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {64--71},
     publisher = {mathdoc},
     volume = {149},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_149_a7/}
}
TY  - JOUR
AU  - R. Kh. Makaova
TI  - Boundary-Value Problem for a Third-Order Hyperbolic Equation Degenerating Inside the Domain with the Aller Operator in the Principal Part
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 64
EP  - 71
VL  - 149
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_149_a7/
LA  - ru
ID  - INTO_2018_149_a7
ER  - 
%0 Journal Article
%A R. Kh. Makaova
%T Boundary-Value Problem for a Third-Order Hyperbolic Equation Degenerating Inside the Domain with the Aller Operator in the Principal Part
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 64-71
%V 149
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_149_a7/
%G ru
%F INTO_2018_149_a7
R. Kh. Makaova. Boundary-Value Problem for a Third-Order Hyperbolic Equation Degenerating Inside the Domain with the Aller Operator in the Principal Part. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Actual Problems of Applied Mathematics and Physics,” Kabardino-Balkaria, Nalchik, May 17–21, 2017, Tome 149 (2018), pp. 64-71. http://geodesic.mathdoc.fr/item/INTO_2018_149_a7/

[1] Balkizov Zh. A., “Pervaya kraevaya zadacha dlya vyrozhdayuschegosya vnutri oblasti giperbolicheskogo uravneniya”, Vladikavkaz. mat. zh., 18:2 (2016), 19–30 | MR

[2] Balkizov Zh. A., “Kraevaya zadacha dlya vyrozhdayuschegosya vnutri oblasti giperbolicheskogo uravneniya”, Izvestiya vysshikh uchebnykh zavedenii. Severo-Kavkazskii region. Estestvennye nauki, 2016, no. 1, 5–10

[3] Vodakhova V. A., “Kraevaya zadacha s nelokalnym usloviem A. M. Nakhusheva dlya odnogo psevdoparabolicheskogo uravneniya vlagoperenosa”, Differents. ur.-iya, 18:2 (1982), 280–285 | MR | Zbl

[4] Makaova R. Kh., “Vtoraya kraevaya zadacha dlya obobschennogo uravneniya Allera s drobnoi proizvodnoi Rimana—Liuvillya”, Doklady Adygskoi Mezhdunar. AN, 17:3 (2015), 35–38

[5] Kalmenov T. Sh., “Kriterii edinstvennosti resheniya zadachi Darbu dlya odnogo vyrozhdayuschegosya giperbolicheskogo uravneniya”, Differents. ur.-iya, 7:1 (1971), 178–181 | Zbl

[6] Kalmenov T. Sh., “O zadache Darbu dlya odnogo vyrozhdayuschegosya giperbolicheskogo uravneniya”, Differents. ur.-iya, 10:1 (1974), 59–68 | Zbl

[7] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, FIZMATLIT, M., 2003

[8] Nakhushev A. M., Nagruzhennye uravneniya i ikh primenenie, Nauka, M., 2012

[9] Nakhushev A. M., Uravneniya matematicheskoi biologii, Vysshaya shkola, M., 1995

[10] Pskhu A. V., “Nachalnaya zadacha dlya lineinogo obyknovennogo differentsialnogo uravneniya drobnogo poryadka”, Matematicheskii sbornik, 202:4 (2011), 111–122 | DOI | MR | Zbl

[11] Smirnov M. M., Vyrozhdayuschiesya giperbolicheskie uravneniya, Vysheishaya shkola, Minsk, 1977

[12] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, FIZMATLIT, M., 2003

[13] Chudnovskii A. F., Teplofizika pochv, Nauka, M., 1976

[14] Shkhanukov M. Kh., “O nekotorykh kraevykh zadachakh dlya uravnenii tretego poryadka, voznikayuschikh pri modelirovanii filtratsii zhidkosti v poristykh sredakh”, Differents. ur.-iya, 18:4 (1982), 689–699 | MR | Zbl

[15] B. D. Coleman, R. J. Duffin, V. J. Mizel, “Instability, Uniqueness, and Nonexistence Theorems for the Equation on a Strip”, Arch. Rat. Mech. Anal., 19 (1965), 100–116 | DOI | MR | Zbl

[16] D. Colton, “Pseudoparabolic Equations in One Space Variable”, Journal of Differ. Equations, 12:3 (1972), 559–565 | DOI | MR | Zbl

[17] E. M. Wright, “The generalized Bessel function of order greater than one”, Quart. J. Math. Oxford Ser., 11 (1940), 36–48 | DOI | MR

[18] G. I. Barenblatt, Iu. P. Zheltov, I. N. Kochina, “Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata]”, PMM, 24:5 (1960), 852–864 | Zbl

[19] M. Hallaire, L'eauet la productions vegetable, Institut National de la Recherche Agronomique, 1964

[20] R. E. Showalter, T. W. Ting, “Pseudoparabolic partial differential equations”, SIAM J. Math. Anal., 1:1 (1970), 1–26 | DOI | MR | Zbl