On Properties of an Integer Function That Generalizes the Wright Function
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Actual Problems of Applied Mathematics and Physics,” Kabardino-Balkaria, Nalchik, May 17–21, 2017, Tome 149 (2018), pp. 38-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, properties of an integer function that is a generalization of the Wright function are examined. Various representations, estimates, and differentiation formulas are obtained.
Keywords: integer function, Wright function, special function.
@article{INTO_2018_149_a4,
     author = {L. L. Karasheva},
     title = {On {Properties} of an {Integer} {Function} {That} {Generalizes} the {Wright} {Function}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {38--43},
     publisher = {mathdoc},
     volume = {149},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_149_a4/}
}
TY  - JOUR
AU  - L. L. Karasheva
TI  - On Properties of an Integer Function That Generalizes the Wright Function
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 38
EP  - 43
VL  - 149
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_149_a4/
LA  - ru
ID  - INTO_2018_149_a4
ER  - 
%0 Journal Article
%A L. L. Karasheva
%T On Properties of an Integer Function That Generalizes the Wright Function
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 38-43
%V 149
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_149_a4/
%G ru
%F INTO_2018_149_a4
L. L. Karasheva. On Properties of an Integer Function That Generalizes the Wright Function. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Actual Problems of Applied Mathematics and Physics,” Kabardino-Balkaria, Nalchik, May 17–21, 2017, Tome 149 (2018), pp. 38-43. http://geodesic.mathdoc.fr/item/INTO_2018_149_a4/

[1] Beitmen G., Erdeii A., Tablitsy integralnykh preobrazovanii: Preobrazovaniya Fure, Laplasa, Mellina, Nauka, M., 1969

[2] Dzhrbashyan M. M., Integralnye preobrazovaniya i predstavleniya funktsii v kompleksnoi oblasti, Nauka, M., 1966

[3] Karasheva L. L., “Zadacha Koshi dlya parabolicheskogo uravneniya vysokogo poryadka s proizvodnoi Rimana—Liuvillya po vremennoi peremennoi”, Dokl. Adyg. Mezhdunar. AN, 15:2 (2013), 40–43

[4] Marichev O. I., Metod vychisleniya integralov ot spetsialnykh funktsii (teoriya i tablitsy formul), Nauka, M., 1978

[5] Nakhushev A. M., Uravneniya matematicheskoi biologii, Vysshaya shkola, M., 1995

[6] Pskhu A. V., Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka, M., 2005

[7] Pskhu A. V., “Fundamentalnoe reshenie diffuzionno-volnovogo uravneniya drobnogo poryadka”, Izv. RAN. Ser. mat., 73:2 (2009), 141–182 | DOI | MR | Zbl

[8] Kilbas A. A., Megumi Saigo, “$H$-transforms: theory and applications”, Anal. Methods Special Funct., 9 (2004) | MR

[9] Wright E. M., “On the coefficients of power series having exponential singularities”, J. London Math. Soc., 8:29 (1933), 71–79 | DOI | MR | Zbl

[10] Wright E. M., “The generalized Bessel function of order greater than one”, Quart. J. Math., Oxford Ser., 11 (1940), 36–48 | DOI | MR