Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2018_149_a3, author = {S. Kh. Gekkieva}, title = {Gevrey {Problem} for a {Loaded} {Mixed-Parabolic} {Equation} with a {Fractional} {Derivative}}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {31--37}, publisher = {mathdoc}, volume = {149}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2018_149_a3/} }
TY - JOUR AU - S. Kh. Gekkieva TI - Gevrey Problem for a Loaded Mixed-Parabolic Equation with a Fractional Derivative JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2018 SP - 31 EP - 37 VL - 149 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2018_149_a3/ LA - ru ID - INTO_2018_149_a3 ER -
%0 Journal Article %A S. Kh. Gekkieva %T Gevrey Problem for a Loaded Mixed-Parabolic Equation with a Fractional Derivative %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2018 %P 31-37 %V 149 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2018_149_a3/ %G ru %F INTO_2018_149_a3
S. Kh. Gekkieva. Gevrey Problem for a Loaded Mixed-Parabolic Equation with a Fractional Derivative. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Actual Problems of Applied Mathematics and Physics,” Kabardino-Balkaria, Nalchik, May 17–21, 2017, Tome 149 (2018), pp. 31-37. http://geodesic.mathdoc.fr/item/INTO_2018_149_a3/
[1] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977
[2] Gekkieva S. Kh., “Zadacha Zhevre dlya smeshanno-parabolicheskogo uravneniya s drobnoi proizvodnoi”, Izv. Kabardino-Balkar. nauch. tsentra RAN, 76:2 (2017), 38–43
[3] Gekkieva S. Kh., “Smeshannye kraevye zadachi dlya nagruzhennogo diffuzionno-volnovogo uravneniya”, Nauch. vedomosti BelGU. Ser. Mat. Fiz., 42:6 (227) (2016), 32–35
[4] Zarubin E. A., “O edinstvennosti zadachi Zhevre dlya smeshannogo uravneniya diffuzii drobnogo poryadka”, Sovremennye metody v teorii kraevykh zadach, Voronezh. vesennyaya mat. shkola «Pontryaginskie chteniya–XV», Voronezh, 2004, 93–94
[5] Kerefov A. A., “Zadacha Zhevre dlya odnogo smeshanno-parabolicheskogo uravneniya”, Differ. ur-ya, 13:1 (1977), 76–83 | MR | Zbl
[6] Kerefov A. A., “Ob odnoi kraevoi zadache Zhevre dlya parabolicheskogo uravneniya so znakoperemennym razryvom pervogo roda u koeffitsienta pri proizvodnoi po vremeni”, Differ. ur-ya, 10:1 (1974), 69–77 | MR | Zbl
[7] Kislov N. V., Chervyakov A. V., “Kraevaya zadacha s menyayuschimsya napravleniem vremeni”, Vestn. MEI, 2002, no. 6, 62–67
[8] Nakhushev A. M., Zadachi so smescheniem dlya uravnenii v chastnykh proizvodnykh, Nauka, M., 2006
[9] Nakhushev A. M., Nagruzhennye uravneniya i ikh primenenie, Nauka, M., 2012
[10] Nakhushev A. M., Uravneniya matematicheskoi biologii, Vysshaya shkola, M., 1995
[11] Popov S. V., “O pervoi kraevoi zadache dlya parabolicheskogo uravneniya s menyayuschimsya napravleniem vremeni”, Dinam. sploshnoi sredy, 102 (1991), 100–113 | Zbl
[12] Pskhu A. V., Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka, M., 2005
[13] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987
[14] Serbina L. I., Nelokalnye matematicheskie modeli perenosa v vodonosnykh sistemakh, Nauka, M., 2007
[15] Tersenov S. A., Parabolicheskie uravneniya s menyayuschimsya napravleniem vremeni, Nauka, Novosibirsk, 1985
[16] Gevrey M., “Sur les equations aux derives partielles du type parabolique”, J. Math. App., 9:6 (1913), 305–475