Boundary-Value Problem with Shift for a Linear Ordinary Differential Equation with the Operator of Discretely Distributed Differentiation
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Actual Problems of Applied Mathematics and Physics,” Kabardino-Balkaria, Nalchik, May 17–21, 2017, Tome 149 (2018), pp. 25-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study a boundary-value problem with local shift for a linear ordinary differential equation with the operator of discretely distributed differentiation, which links the value of the solution at the endpoints of the considered interval with values at interior points.
Keywords: fractional differentiation operator, Caputo derivative, boundary-value problem.
@article{INTO_2018_149_a2,
     author = {L. H. Gadzova},
     title = {Boundary-Value {Problem} with {Shift} for a {Linear} {Ordinary} {Differential} {Equation} with the {Operator} of {Discretely} {Distributed} {Differentiation}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {25--30},
     publisher = {mathdoc},
     volume = {149},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_149_a2/}
}
TY  - JOUR
AU  - L. H. Gadzova
TI  - Boundary-Value Problem with Shift for a Linear Ordinary Differential Equation with the Operator of Discretely Distributed Differentiation
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 25
EP  - 30
VL  - 149
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_149_a2/
LA  - ru
ID  - INTO_2018_149_a2
ER  - 
%0 Journal Article
%A L. H. Gadzova
%T Boundary-Value Problem with Shift for a Linear Ordinary Differential Equation with the Operator of Discretely Distributed Differentiation
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 25-30
%V 149
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_149_a2/
%G ru
%F INTO_2018_149_a2
L. H. Gadzova. Boundary-Value Problem with Shift for a Linear Ordinary Differential Equation with the Operator of Discretely Distributed Differentiation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Actual Problems of Applied Mathematics and Physics,” Kabardino-Balkaria, Nalchik, May 17–21, 2017, Tome 149 (2018), pp. 25-30. http://geodesic.mathdoc.fr/item/INTO_2018_149_a2/

[1] Bogatyreva F. T., “Kraevaya zadacha so smescheniem dlya obyknovennogo differentsialnogo uravneniya s operatorom drobnogo differentsirovaniya Dzhrbashyana—Nersesyana”, Differ. uravn., 50:2 (2014), 160–166 | DOI | MR | Zbl

[2] Gadzova L. Kh., “Zadacha Dirikhle dlya obyknovennogo differentsialnogo uravneniya drobnogo poryadka”, Dokl. Adygskoi (Cherkesskoi) Mezhdunar. Akad. nauk, 15:2 (2013), 36–39

[3] Gadzova L. Kh., “Zadachi Dirikhle i Neimana dlya obyknovennogo differentsialnogo uravneniya drobnogo poryadka s postoyannymi koeffitsientami”, Differ. uravn., 51:12 (2015), 1580–1586 | DOI | MR | Zbl

[4] Gadzova L. Kh., “Zadacha Neimana dlya obyknovennogo differentsialnogo uravneniya drobnogo poryadka”, Vladikavkaz. mat. zh., 18:3 (2016), 22–30 | MR

[5] Gadzova L. Kh., “Nelokalnaya kraevaya zadacha dlya obyknovennogo differentsialnogo uravneniya s operatorom diskretno raspredelennogo differentsirovaniya”, Izv. Kabardino-Balkarsk. nauch. tsentra RAN, 75:1 (2017), 12–18

[6] Dzhrbashyan M. M., Nersesyan A. B., “Drobnye proizvodnye i zadacha Koshi dlya differentsialnykh uravnenii drobnogo poryadka”, Izv. AN Arm. SSR. Ser. mat., 3:1 (1968), 3–28 | MR

[7] Dzhrbashyan M. M., “Kraevaya zadacha dlya differentsialnogo operatora drobnogo poryadka tipa Shturma—Liuvillya”, Izv. AN Arm. SSR, 5:2 (1970), 71–96 | Zbl

[8] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003

[9] Nakhushev A. M., Tkhakakhov R. B., “O kontinualnykh analogakh reologicheskikh uravnenii sostoyaniya i logisticheskom zakone izmeneniya vyazkouprugikh svoistv polimera”, Dokl. Adygskoi (Cherkesskoi) Mezhdunar. Akad. nauk, 1:2 (1995), 6–11

[10] Pskhu A. V., Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka, M., 2005

[11] Pskhu A. V., “Nachalnaya zadacha dlya lineinogo obyknovennogo differentsialnogo uravneniya drobnogo poryadka”, Mat. sb., 202:4 (2011), 111–122 | DOI | MR | Zbl

[12] Pskhu A. V., “Kraevaya zadacha dlya uravneniya v chastnykh proizvodnykh pervogo poryadka s operatorom drobnogo diskretno raspredelennogo differentsirovaniya”, Differ. uravn., 52:12 (2016), 1682–1694 | DOI | MR | Zbl

[13] Pskhu A. V., “Uravnenie drobnoi diffuzii s operatorom diskretno raspredelennogo differentsirovaniya”, Sib. Electr. Math. Rep., 13 (2016), 1078–1098 | MR | Zbl

[14] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987

[15] Uchaikin V. V., Metod drobnykh proizvodnykh, Artishok, Ulyanovsk, 2008

[16] Alikhanov A., “Numerical methods of solutions of boundary-value problems for the multi-term variable-distributed order diffusion equation”, Appl. Math. Comput., 268:1 (2015), 529–541 | MR

[17] Barrett J. H., “Differential equations of non-integer order”, Can. J. Math., 6:4 (1954), 529–541 | DOI | MR | Zbl

[18] Gongsheng Li, Chunlong Sun, Xianzheng Jia, Dianhu Du., “Numerical solution to the multi-term time fractional diffusion equation in a finite domain”, Numer. Math. Theory Meth. Appl., 9:3 (2016), 337–357 | DOI | MR | Zbl

[19] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and applications of fractional differential equations, Elsevier, Amsterdam | MR | Zbl

[20] Podlubny I., Fractional differential equations, Academic Press, 1999 | MR | Zbl

[21] Wright E. M., “On the coefficients of power series having exponential singularities”, J. London Math. Soc., 8:29 (1933), 71–79 | DOI | MR | Zbl