Boundary-Value Problem for a Loaded Equation of Hyperbolic-Parabolic Type with Degeneracy of Order in the Domain of Hyperbolicity
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Actual Problems of Applied Mathematics and Physics,” Kabardino-Balkaria, Nalchik, May 17–21, 2017, Tome 149 (2018), pp. 113-117.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study a boundary-value problem for a loaded equation of hyperbolic-parabolic type with degeneracy of order in the domain of its hyperbolicity. An existence and uniqueness theorem for solutions of this problem is proved and a representation of solutions is presented.
Keywords: loaded equation, mixed-type equation, hyperbolic equation, boundary-value problem.
Mots-clés : parabolic equation
@article{INTO_2018_149_a12,
     author = {K. U. Khubiev},
     title = {Boundary-Value {Problem} for a {Loaded} {Equation} of {Hyperbolic-Parabolic} {Type} with {Degeneracy} of {Order} in the {Domain} of {Hyperbolicity}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {113--117},
     publisher = {mathdoc},
     volume = {149},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_149_a12/}
}
TY  - JOUR
AU  - K. U. Khubiev
TI  - Boundary-Value Problem for a Loaded Equation of Hyperbolic-Parabolic Type with Degeneracy of Order in the Domain of Hyperbolicity
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 113
EP  - 117
VL  - 149
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_149_a12/
LA  - ru
ID  - INTO_2018_149_a12
ER  - 
%0 Journal Article
%A K. U. Khubiev
%T Boundary-Value Problem for a Loaded Equation of Hyperbolic-Parabolic Type with Degeneracy of Order in the Domain of Hyperbolicity
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 113-117
%V 149
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_149_a12/
%G ru
%F INTO_2018_149_a12
K. U. Khubiev. Boundary-Value Problem for a Loaded Equation of Hyperbolic-Parabolic Type with Degeneracy of Order in the Domain of Hyperbolicity. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Actual Problems of Applied Mathematics and Physics,” Kabardino-Balkaria, Nalchik, May 17–21, 2017, Tome 149 (2018), pp. 113-117. http://geodesic.mathdoc.fr/item/INTO_2018_149_a12/

[1] Abdullaev O. Kh., “Nelokalnaya zadacha dlya nagruzhennogo uravneniya smeshannogo tipa s integralnym operatorom”, Vestn. Samarsk. gos. tekhn. un-ta. Ser. fiz.-mat. nauki, 20:2 (2016), 220–240 | DOI

[2] Attaev A. Kh., “O nekotorykh zadachakh dlya nagruzhennogo differentsialnogo uravneniya v chastnykh proizvodnykh pervogo poryadka”, Vestn. KRAUNTs. Fiz.-mat. nauki, 2016, no. 4-1(16), 9–14 | MR | Zbl

[3] Attaev A. Kh., “Zadacha Gursa dlya nagruzhennogo vyrozhdayuschegosya giperbolicheskogo uravneniya vtorogo poryadka s operatorom Gellerstedta v glavnoi chasti”, Vestn. Samarsk. gos. tekhn. un-ta. Ser. fiz.-mat. nauki, 20:1 (2016), 7–21 | DOI | Zbl

[4] Baltaeva U. I., Islomov I. B., “Kraevye zadachi dlya nagruzhennykh differentsialnykh uravnenii giperbolicheskogo i smeshannogo tipov tretego poryadka”, Ufim. mat. zh., 3:3 (2011), 15–25 | MR | Zbl

[5] Baltaeva U. I., “O nekotorykh kraevykh zadachakh dlya nagruzhennykh integro-differentsialnykh uravnenii tretego poryadka s deistvitelnymi parametrami”, Vestn. Udmurt. un-ta. Mat. Mekh. Kompyut. nauki, 3 (2012), 3–12 | Zbl

[6] Dzhenaliev M. T., Ramazanov M. I., Nagruzhennye uravneniya kak vozmuscheniya differentsialnykh uravnenii, Gylym, Almaty, 2010

[7] Dikinov Kh. Zh., Kerefov A. A., Nakhushev A. M., “Ob odnoi kraevoi zadache dlya nagruzhennogo uravneniya teploprovodnosti”, Differ. uravn., 12:1 (1976), 177–179 | MR | Zbl

[8] Eleev V. A., “O nekotorykh kraevykh zadachakh dlya smeshannykh nagruzhennykh uravnenii vtorogo i tretego poryadka”, Differ. uravn., 30:2 (1994), 230–237 | MR | Zbl

[9] Kaigermazov A. A., Kudaeva F. Kh., “Ob odnoi matematicheskoi modeli dinamiki vozrastnoi struktury”, Estestvennye i matematicheskie nauki v sovremennom mire, 2014, no. 25, 17–26

[10] Nakhushev A. M., Nagruzhennye uravneniya i ikh primeneniya, Nauka, M., 2012

[11] Nakhushev A.M., Uravneniya matematicheskoi biologii, Vysshaya shkola, M., 1995

[12] Sabitov K. B., “Nachalno-granichnaya zadacha dlya nagruzhennogo uravneniya parabolo-giperbolicheskogo tipa”, Dokl. Adyg. Mezhdunar. AN, 11:1 (2009), 66–73 | MR

[13] Sabitov K. B., Melisheva E. P., “Zadacha Dirikhle dlya nagruzhennogo uravneniya smeshannogo tipa v pryamougolnoi oblasti”, Izv. vuzov. Mat., 2013, no. 7, 62–76 | Zbl

[14] Sabitov K. B., “Nachalno-granichnaya zadacha dlya parabolo-giperbolicheskogo uravneniya s nagruzhennymi slagaemymi”, Izv. vuzov. Mat., 2015, no. 6, 31–42 | Zbl

[15] Tarasenko A. V., “O razreshimosti nelokalnoi zadachi dlya nagruzhennogo parabolo-giperbolicheskogo uravneniya”, Izv. vuzov. Mat., 2013, no. 1, 73–81 | Zbl

[16] Khubiev K. U., “Ob odnom analoge zadachi Trikomi dlya uravneniya smeshannogo giperbolo-parabolicheskogo tipa s proizvodnoi pri nagruzke”, Dokl. Adyg. Mezhdunar. AN, 11:2 (2009), 58–60

[17] Khubiev K. U., “Analog zadachi Trikomi dlya nagruzhennogo uravneniya giperbolo-parabolicheskogo tipa s drobnoi proizvodnoi pri nagruzke”, Dokl. Adyg. Mezhdunar. AN, 17:3 (2015), 54–59

[18] Khubiev K. U., “Printsip maksimuma dlya kharakteristicheski nagruzhennogo uravneniya parabolo-giperbolicheskogo tipa”, Vladikavkaz. mat. zh., 2016, no. 4 (18), 80–85 | MR

[19] Khubiev K. U., “Analog zadachi Trikomi dlya kharakteristicheski nagruzhennogo uravneniya giperbolo-parabolicheskogo tipa s peremennymi koeffitsientami”, Ufim. mat. zh., 9:2 (2017), 94–103 | MR