Nonlocal Boundary-Value Problem for a Third-Order Equation of Parabolic-Hyperbolic Type with Degeneration of Type and Order in the Hyperbolicity Domain
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Actual Problems of Applied Mathematics and Physics,” Kabardino-Balkaria, Nalchik, May 17–21, 2017, Tome 149 (2018), pp. 14-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a nonlocal boundary-value problem for a third-order parabolic-hyperbolic equation with degeneracy of type and order in the domain of hyperbolicity, containing second-order derivatives in the boundary conditions. Sufficient conditions of the unique solvability of the problem are obtained. The Tricomi method is used to prove the uniqueness theorem for a solution. The solution of the problem is expressed in the explicit form.
Keywords: degenerate hyperbolic equation of the first kind, equation with multiple characteristics, third-order parabolic-hyperbolic equation, mixed boundary-value problem, nonlocal boundary-value problem, Tricomi problem, Tricomi method, Volterra integral equation of the second kind, Fredholm integral equation of the second kind.
@article{INTO_2018_149_a1,
     author = {Zh. A. Balkizov},
     title = {Nonlocal {Boundary-Value} {Problem} for a {Third-Order} {Equation} of {Parabolic-Hyperbolic} {Type} with {Degeneration} of {Type} and {Order} in the {Hyperbolicity} {Domain}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {14--24},
     publisher = {mathdoc},
     volume = {149},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_149_a1/}
}
TY  - JOUR
AU  - Zh. A. Balkizov
TI  - Nonlocal Boundary-Value Problem for a Third-Order Equation of Parabolic-Hyperbolic Type with Degeneration of Type and Order in the Hyperbolicity Domain
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 14
EP  - 24
VL  - 149
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_149_a1/
LA  - ru
ID  - INTO_2018_149_a1
ER  - 
%0 Journal Article
%A Zh. A. Balkizov
%T Nonlocal Boundary-Value Problem for a Third-Order Equation of Parabolic-Hyperbolic Type with Degeneration of Type and Order in the Hyperbolicity Domain
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 14-24
%V 149
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_149_a1/
%G ru
%F INTO_2018_149_a1
Zh. A. Balkizov. Nonlocal Boundary-Value Problem for a Third-Order Equation of Parabolic-Hyperbolic Type with Degeneration of Type and Order in the Hyperbolicity Domain. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Actual Problems of Applied Mathematics and Physics,” Kabardino-Balkaria, Nalchik, May 17–21, 2017, Tome 149 (2018), pp. 14-24. http://geodesic.mathdoc.fr/item/INTO_2018_149_a1/

[1] Abdinazarov S., “Obschie kraevye zadachi dlya uravneniya tretego poryadka s kratnymi kharakteristikami”, Differents. uravneniya, 17:1 (1981), 3–12 | MR | Zbl

[2] Balkizov Zh. A., “Analog zadachi Trikomi dlya uravneniya parabolo-giperbolicheskogo tipa tretego poryadka s operatorom Gellerstedta v oblasti giperbolichnosti”, Doklady Adygskoi (Cherkesskoi) mezhdunarodnoi akademii nauk, 16:2 (2014), 20–27

[3] Balkizov Zh. A., “Kraevye zadachi dlya uravneniya smeshannogo tipa tretego poryadka s operatorom Gellerstedta v giperbolicheskoi chasti”, Izvestiya Kabardino-Balkarskogo gosudarstvennogo universiteta, 1:1 (2011), 21–33

[4] Balkizov Zh. A., “Nelokalnaya kraevaya zadacha dlya modelnogo uravneniya parabolo-giperbolicheskogo tipa tretego poryadka”, Doklady Adygskoi (Cherkesskoi) mezhdunarodnoi akademii nauk, 17:4 (2015), 9–20

[5] Balkizov Zh. A., “Kraevaya zadacha dlya vyrozhdayuschegosya vnutri oblasti giperbolicheskogo uravneniya”, Izvestiya vysshikh uchebnykh zavedenii. Severo-Kavkazskii region. Estestvennye nauki, 1 (2016), 5–10

[6] Balkizov Zh. A., “Pervaya kraevaya zadacha dlya vyrozhdayuschegosya vnutri oblasti giperbolicheskogo uravneniya”, Vladikavkaz. mat. zh., 18:2 (2016), 19–30 | MR

[7] Balkizov Zh. A., “Pervaya kraevaya zadacha dlya uravneniya parabolo-giperbolicheskogo tipa tretego poryadka s vyrozhdeniem tipa i poryadka v oblasti giperbolichnosti”, Ufim. mat. zh., 9:2 (2017), 25–39 | MR

[8] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii. 3. Ellipticheskie i avtomorfnye funktsii. Funktsii Lame i Mate, Nauka, M., 1967

[9] Bers L., Matematicheskie voprosy dozvukovoi i okolozvukovoi gazovoi dinamiki, IL, M., 1961

[10] Bzhikhatlov Kh. G., Nakhushev A. M., “Ob odnoi kraevoi zadache dlya uravneniya smeshannogo parabolo-giperbolicheskogo tipa”, Doklady Akademii nauk SSSR, 183:2 (1968), 261–264 | MR

[11] Bitsadze A. V., Uravneniya smeshannogo tipa, Izd-vo AN SSSR, M., 1959

[12] Dzhuraev T. D., Kraevye zadachi dlya uravnenii smeshannogo i smeshanno-sostavnogo tipov, FAN, Tashkent, 1979

[13] Eleev V. A., Kumykova S. K., “O nekotorykh kraevykh zadachakh so smescheniem na kharakteristikakh dlya smeshannogo uravneniya giperbolo-parabolicheskogo uravneniya”, Ukr. mat. zh., 52:5 (2000), 716–717 | MR

[14] Eleev V. A., Kumykova S. K., “Vnutrennekraevaya zadacha dlya uravneniya smeshannogo tipa tretego poryadka s kratnymi kharakteristikami”, Izvestiya Kabardino-Balkarskogo nauchnogo tsentra RAN, 2010, no. 5 (37), 5–14

[15] Zolina L. A., “O kraevoi zadache dlya modelnogo uravneniya giperbolo-parabolicheskogo tipa”, Zh. vychisl. mat. i mat. fiz., 6:6 (1966), 991–1001 | MR | Zbl

[16] Irgashev Yu., “Nekotorye kraevye zadachi dlya uravnenii tretego poryadka s kratnymi kharakteristikami”, Sbornik nauchnykh trudov «Kraevye zadachi dlya differentsialnykh uravnenii i ikh prilozheniya», FAN, Tashkent, 1976, 17–31 | MR

[17] Kalmenov T. Sh., “Kriterii edinstvennosti resheniya zadachi Darbu dlya odnogo vyrozhdayuschegosya giperbolicheskogo uravneniya”, Differents. uravneniya, 27:1 (1971), 178–181

[18] Kalmenov T. Sh., “Kriterii nepreryvnosti resheniya zadachi Gursa dlya odnogo vyrozhdayuschegosya uravneniya”, Differents. uravneniya, 8:1 (1972), 41–54 | Zbl

[19] Karpman V. I., Nelineinye volny v dispergiruyuschikh sredakh, Nauka, M., 1973

[20] Kilbas A. A., Repin O. A., “Zadacha so smescheniem dlya parabolo-giperbolicheskogo uravneniya”, Differents. uravneniya, 34:6 (1998), 799–805 | MR | Zbl

[21] Lukina G. A., “Kraevye zadachi s integralnymi granichnymi usloviyami dlya linearizovannogo uravneniya Kortevega–de Friza”, Vestnik Yuzhno-Uralskogo gos. univ.-ta, 2011, no. 17, 52–61 | Zbl

[22] Lykov A. V., “Primenenie metodov termodinamiki neobratimykh protsessov k issledovaniyu teplo i massoobmena”, Inzhenerno-fizicheskii zhurnal, 9:3 (1965), 287–304

[23] Nakhushev A. M., Uravneniya matematicheskoi biologii, Vysshaya shkola, M., 1995

[24] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003

[25] Nakhushev A. M., “K teorii lineinykh kraevykh zadach dlya uravneniya vtorogo poryadka smeshannogo giperbolo-parabolicheskogo tipa”, Differents. uravneniya, 14:1 (1978), 56–73 | MR

[26] Pskhu A. V., “Nachalnaya zadacha dlya lineinogo obyknovennogo differentsialnogo uravneniya drobnogo poryadka”, Mat. sbornik, 202:4 (2011), 111–122 | DOI | MR | Zbl

[27] Pskhu A. V., Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka, M., 2005

[28] Repin O. A., Kumykova S. K., “Zadacha so smescheniem dlya uravneniya tretego poryadka s razryvnymi koeffitsientami”, Vestn. Samar. gos. tekh. univ.-ta. Ser. fiz.-mat. nauki, 29:4 (2012), 17–25 | DOI | Zbl

[29] Repin O. A., Kumykova S. K., “Nelokalnaya zadacha dlya uravneniya smeshannogo tipa tretego poryadka s kratnymi kharakteristikami”, Vestn. Samar. gos. tekh. univ.-ta. Ser. fiz.-mat. nauki, 25:4 (2011), 25–36 | DOI | Zbl

[30] Salakhitdinov M. S., Berdyshev A. S., “O nekotorykh nelokalnykh kraevykh zadachakh dlya smeshannogo parabolo-giperbolicheskogo uravneniya”, Izvestiya AN UzSSR. Ser. fiz.-mat. nauki, 1982, no. 4, 25–31 | Zbl

[31] Samko S. G., Kilbas A. A., Marichev O. I, Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987

[32] Smirnov M. M., Vyrozhdayuschiesya giperbolicheskie uravneniya, Vysheishaya shkola, Minsk, 1977

[33] Frankl F. I., Izbrannye trudy po gazovoi dinamike, Nauka, M., 1973

[34] Cattabriga L., “Un problema al contorno per una equazione parabolica di ordine dispari.”, Ann. Scu. Nor. Super. Pisa, 13:2 (1959), 163 | MR | Zbl

[35] Korteweg D. J., De Vries G., “On the Change of Form of Long Waves Advancing in a Rectangular Canal, and on a New Type of Long Stationary Waves”, Philosophical Magazine, 39 (1895), 422–443 | MR

[36] Mittag-Leffler M. G., “Sur la function nouvelle $E_{\frac {1}{\alpha}}(x)$”, C. R. Acad. Sci., Paris, 137 (1903), 554–558

[37] Wright E. M., “The generalized Bessel function of order greater than one”, Quart. J. Math. Oxford Ser., 11 (1940), 36–48 | DOI | MR

[38] Wright E. M., “On the coefficient of power series having exponential singularities”, J. London Math. Soc., 1933, 71–79 | DOI | MR | Zbl