Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2018_148_a7, author = {A. N. Kulikov and A. V. Sekatskaya}, title = {Local {Attractors} in {One} {Boundary-Value} {Problem} for the {Kuramoto--Sivashinsky} {Equation}}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {58--65}, publisher = {mathdoc}, volume = {148}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2018_148_a7/} }
TY - JOUR AU - A. N. Kulikov AU - A. V. Sekatskaya TI - Local Attractors in One Boundary-Value Problem for the Kuramoto--Sivashinsky Equation JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2018 SP - 58 EP - 65 VL - 148 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2018_148_a7/ LA - ru ID - INTO_2018_148_a7 ER -
%0 Journal Article %A A. N. Kulikov %A A. V. Sekatskaya %T Local Attractors in One Boundary-Value Problem for the Kuramoto--Sivashinsky Equation %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2018 %P 58-65 %V 148 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2018_148_a7/ %G ru %F INTO_2018_148_a7
A. N. Kulikov; A. V. Sekatskaya. Local Attractors in One Boundary-Value Problem for the Kuramoto--Sivashinsky Equation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Geometric Methods in Control Theory and Mathematical Physics: Differential Equations, Integrability, and Qualitative Theory,” Ryazan, September 15–18, 2016, Tome 148 (2018), pp. 58-65. http://geodesic.mathdoc.fr/item/INTO_2018_148_a7/
[8] Krein S. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1977
[9] Kulikov A. N., “O gladkikh invariantnykh mnogoobraziyakh polugruppy nelineinykh operatorov v banakhovom prostranstve”, Issl. po ustoichivosti i teorii kolebanii, YarGU, Yaroslavl, 1976, 114–129
[10] Kulikov A. N, Kulikov D. A., “Formirovanie volnoobraznykh nanostruktur na poverkhnosti ploskikh podlozhek pri ionnoi bombardirovke”, Zh. vychisl. mat. mat. fiz., 52:5 (2012), 930–945 | MR | Zbl
[11] Marcden Dzh., Mak-Kraken M., Bifurkatsiya rozhdeniya tsikla i ee prilozheniya, Nauka, M., 1980
[12] Sobolevskii P. E., “Ob uravneniyakh parabolicheskogo tipa v banakhovom prostranstve”, Tr. Mosk. mat. o-va, 10 (1967), 297–350
[13] Bradley R. M., Harper J. M. E., “Theory of ripple topography induced by ion bombardment”, J. Vac. Sci. Technol. A., 6:4 (1988), 2390–2395 | DOI
[14] Foias C., Nicolaenko B., Sell G. R., Temam R., “Inertial manifolds for the Kuramoto–Sivashinsky equation and an estimate of their lowest dimension”, J. Math. Pures Appl., 67 (1988), 197–226 | MR | Zbl
[15] Foias C., Titi E. C., “Determining nodes, finite difference schemes and inertial manifolds”, Nonlinearity, 4:1 (1991), 135–153 | DOI | MR | Zbl
[16] Kulikov A. N., Kulikov D. A., “Bifurcations in a boundary-value problem of nanoelectronics”, J. Math. Sci., 208:2 (2015), 211–221 | DOI | MR | Zbl
[17] Kulikov A. N., Kulikov D. A., “Bifurcations in Kuramoto–Sivashinsky equation”, Pliska Stud. Math., 25 (2015), 101–110 | MR
[18] Kuramoto Y., Chemical oscillations, waves and turbulence, Springer-Verlag, Berlin, 1984 | MR | Zbl
[19] Nicolaenko B., Scheurer B., Temam R., “Some global dynamical properties of the Kuramoto–Sivashinsky equations: Nonlinear stability and attractors”, Phys. D., 16:2 (1985), 155–183 | DOI | MR | Zbl
[20] Sivashinsky I., “Weak turbulence in periodic flow”, Phys. D., 17:2 (1985), 243–255 | DOI | MR | Zbl