Local Attractors in One Boundary-Value Problem for the Kuramoto--Sivashinsky Equation
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Geometric Methods in Control Theory and Mathematical Physics: Differential Equations, Integrability, and Qualitative Theory,” Ryazan, September 15–18, 2016, Tome 148 (2018), pp. 58-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

A boundary-value problem for the generalized Kuramoto–Sivashinsky equation with homogeneous Neumann boundary conditions is considered in the paper. The analysis of stability of spatially homogeneous equilibrium states is given and local bifurcations are studied at the changes of their stability. When solving the problem, we use the method of invariant manifolds in combination with the theory of normal forms. The asymptotic formulas are found for bifurcating solutions.
Keywords: boundary value problems, stability, normal forms, invariant manifolds, asymptotic formulas.
Mots-clés : bifurcations
@article{INTO_2018_148_a7,
     author = {A. N. Kulikov and A. V. Sekatskaya},
     title = {Local {Attractors} in {One} {Boundary-Value} {Problem} for the {Kuramoto--Sivashinsky} {Equation}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {58--65},
     publisher = {mathdoc},
     volume = {148},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_148_a7/}
}
TY  - JOUR
AU  - A. N. Kulikov
AU  - A. V. Sekatskaya
TI  - Local Attractors in One Boundary-Value Problem for the Kuramoto--Sivashinsky Equation
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 58
EP  - 65
VL  - 148
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_148_a7/
LA  - ru
ID  - INTO_2018_148_a7
ER  - 
%0 Journal Article
%A A. N. Kulikov
%A A. V. Sekatskaya
%T Local Attractors in One Boundary-Value Problem for the Kuramoto--Sivashinsky Equation
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 58-65
%V 148
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_148_a7/
%G ru
%F INTO_2018_148_a7
A. N. Kulikov; A. V. Sekatskaya. Local Attractors in One Boundary-Value Problem for the Kuramoto--Sivashinsky Equation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Geometric Methods in Control Theory and Mathematical Physics: Differential Equations, Integrability, and Qualitative Theory,” Ryazan, September 15–18, 2016, Tome 148 (2018), pp. 58-65. http://geodesic.mathdoc.fr/item/INTO_2018_148_a7/

[8] Krein S. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1977

[9] Kulikov A. N., “O gladkikh invariantnykh mnogoobraziyakh polugruppy nelineinykh operatorov v banakhovom prostranstve”, Issl. po ustoichivosti i teorii kolebanii, YarGU, Yaroslavl, 1976, 114–129

[10] Kulikov A. N, Kulikov D. A., “Formirovanie volnoobraznykh nanostruktur na poverkhnosti ploskikh podlozhek pri ionnoi bombardirovke”, Zh. vychisl. mat. mat. fiz., 52:5 (2012), 930–945 | MR | Zbl

[11] Marcden Dzh., Mak-Kraken M., Bifurkatsiya rozhdeniya tsikla i ee prilozheniya, Nauka, M., 1980

[12] Sobolevskii P. E., “Ob uravneniyakh parabolicheskogo tipa v banakhovom prostranstve”, Tr. Mosk. mat. o-va, 10 (1967), 297–350

[13] Bradley R. M., Harper J. M. E., “Theory of ripple topography induced by ion bombardment”, J. Vac. Sci. Technol. A., 6:4 (1988), 2390–2395 | DOI

[14] Foias C., Nicolaenko B., Sell G. R., Temam R., “Inertial manifolds for the Kuramoto–Sivashinsky equation and an estimate of their lowest dimension”, J. Math. Pures Appl., 67 (1988), 197–226 | MR | Zbl

[15] Foias C., Titi E. C., “Determining nodes, finite difference schemes and inertial manifolds”, Nonlinearity, 4:1 (1991), 135–153 | DOI | MR | Zbl

[16] Kulikov A. N., Kulikov D. A., “Bifurcations in a boundary-value problem of nanoelectronics”, J. Math. Sci., 208:2 (2015), 211–221 | DOI | MR | Zbl

[17] Kulikov A. N., Kulikov D. A., “Bifurcations in Kuramoto–Sivashinsky equation”, Pliska Stud. Math., 25 (2015), 101–110 | MR

[18] Kuramoto Y., Chemical oscillations, waves and turbulence, Springer-Verlag, Berlin, 1984 | MR | Zbl

[19] Nicolaenko B., Scheurer B., Temam R., “Some global dynamical properties of the Kuramoto–Sivashinsky equations: Nonlinear stability and attractors”, Phys. D., 16:2 (1985), 155–183 | DOI | MR | Zbl

[20] Sivashinsky I., “Weak turbulence in periodic flow”, Phys. D., 17:2 (1985), 243–255 | DOI | MR | Zbl