On a Boundary-Value Problem for a Fourth-Order Partial Integro-Differential Equation with Degenerate Kernel
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 145 (2018), pp. 95-109.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the classical solvability of a nonlocal boundary-value problem for a three-dimensional, homogeneous, fourth-order, pseudoelliptic integro-differential equation with degenerate kernel is proved. The spectral Fourier method based on the separation of variables is used and a countable system of algebraic equations is obtained. A solution is constructed explicitly in the form of a Fourier series. The absolute and uniform convergence of the series obtained and the possibility of termwise differentiation of the solution with respect to all variables are justified. A criterion of unique solvability of the problem considered is ascertained.
Mots-clés : pseudoelliptic equation
Keywords: degenerate kernel, integral condition, one valued solvability, classical solution.
@article{INTO_2018_145_a2,
     author = {T. K. Yuldashev},
     title = {On a {Boundary-Value} {Problem} for a {Fourth-Order}  {Partial} {Integro-Differential} {Equation} with {Degenerate} {Kernel}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {95--109},
     publisher = {mathdoc},
     volume = {145},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_145_a2/}
}
TY  - JOUR
AU  - T. K. Yuldashev
TI  - On a Boundary-Value Problem for a Fourth-Order  Partial Integro-Differential Equation with Degenerate Kernel
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 95
EP  - 109
VL  - 145
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_145_a2/
LA  - ru
ID  - INTO_2018_145_a2
ER  - 
%0 Journal Article
%A T. K. Yuldashev
%T On a Boundary-Value Problem for a Fourth-Order  Partial Integro-Differential Equation with Degenerate Kernel
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 95-109
%V 145
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_145_a2/
%G ru
%F INTO_2018_145_a2
T. K. Yuldashev. On a Boundary-Value Problem for a Fourth-Order  Partial Integro-Differential Equation with Degenerate Kernel. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 145 (2018), pp. 95-109. http://geodesic.mathdoc.fr/item/INTO_2018_145_a2/

[1] Antontsev S. N., Kazhikhov A. V., Monakhov V. N., Kraevye zadachi mekhaniki neodnorodnykh zhidkostei, Nauka, Novosibirsk, 1983

[2] Apakov Yu. P., “O reshenii kraevoi zadachi dlya uravneniya tretego poryadka s kratnymi kharakteristikami”, Ukr. mat. zh., 64:1 (2012), 1–11

[3] Asanova A. T., “O nelokalnoi kraevoi zadache dlya sistem giperbolicheskikh uravnenii s impulsnymi vozdeistviyami”, Ukr. mat. zh., 65:3 (2013), 315–328 | Zbl

[4] Akhtyamov A. M., Ayupova A. R., “O reshenii zadachi diagnostirovaniya defektov v vide maloi polosti v sterzhne”, Zh. Srednevolzh. mat. o-va, 12:3 (2010), 37–42

[5] Beshtokov M. Kh., “Chislennyi metod resheniya odnoi nelokalnoi kraevoi zadachi dlya uravneniya tretego poryadka giperbolicheskogo tipa”, Zh. vychisl. mat. mat. fiz., 54:9 (2014), 1497–1514 | DOI | Zbl

[6] Boichuk A. A., Strakh A. P., “Neterovy kraevye zadachi dlya sistem lineinykh integro-dinamicheskikh uravnenii s vyrozhdennym yadrom na vremennoi shkale”, Nelin. kolebaniya, 17:1 (2014), 32–38

[7] Gordeziani D. G., Avalishvili G. A., “Resheniya nelokalnykh zadach dlya odnomernykh kolebanii sredy”, Mat. model., 12:1 (2000), 94–103 | Zbl

[8] Dzhumabaev D. S., Bakirova E. A., “Ob odnoznachnoi razreshimosti kraevoi zadachi dlya sistem integro-differentsialnykh uravnenii Fredgolma s vyrozhdennym yadrom”, Nelin. kolebaniya, 18:4 (2015), 489–506

[9] Dzhuraev T. D., Sopuev A., K teorii differentsialnykh uravnenii v chastnykh proizvodnykh chetvertogo poryadka, FAN, Tashkent, 2000

[10] Ivanchov N. I., “Kraevye zadachi dlya parabolicheskogo uravneniya s integralnym usloviem”, Differ. uravn., 40:4 (2004), 547–564 | Zbl

[11] Ilin V. A., “O razreshimosti smeshannykh zadach dlya giperbolicheskogo i parabolicheskogo uravnenii”, Usp. mat. nauk, 15:2 (92) (1960), 97–154 | Zbl

[12] Lazhetich N., “O suschestvovanii klassicheskogo resheniya smeshannoi zadachi dlya odnomernogo giperbolicheskogo uravneniya vtorogo poryadka”, Differ. uravn., 34:5 (1998), 682–694 | MR

[13] Martemyanova N. V., “Zadacha Dirikhle dlya uravneniya smeshannogo elliptiko-giperbolicheskogo tipa s peremennym potentsialom”, Izv. vuzov. Mat., 2015, no. 11, 44–53 | Zbl

[14] Moissev E. I., “O reshenii spektralnym metodom odnoi nelokalnoi kraevoi zadachi”, Differ. uravn., 35:8 (1999), 1094–1100 | MR

[15] Pulkina L. S., “Nelokalnaya zadacha dlya giperbolicheskogo uravneniya s integralnymi usloviyami 1 roda s yadrami, zavisyaschimi ot vremeni”, Izv. vuzov. Mat., 2012, no. 10, 32–44 | Zbl

[16] Repin O. A., “Ob odnoi zadache s dvumya nelokalnymi kraevymi usloviyami dlya uravneniya smeshannogo tipa”, Dokl. RAN, 365:5 (1999), 593–595 | MR | Zbl

[17] Sabitov K. B., “Nelokalnaya zadacha dlya uravneniya parabolo-giperbolicheskogo tipa v pryamougolnoi oblasti”, Mat. zametki, 89:4 (2011), 596–602 | DOI | Zbl

[18] Skrypnik I. V., Metody issledovaniya nelineinykh ellipticheskikh granichnykh zadach, Nauka, M., 1990 | MR

[19] Tagiev R. K., Gabibov V. M., “Ob odnoi zadache optimalnogo upravleniya dlya uravneniya teploprovodnosti s integralnym granichnym usloviem”, Vestn. Samar. gos. tekhn. un-ta, 20:1 (2016), 54–64 | DOI | MR | Zbl

[20] Tikhonov I. V., “Teoremy edinstvennosti v lineinykh nelokalnykh zadachakh dlya abstraktnykh differentsialnykh uravnenii”, Izv. RAN. Ser. mat., 67:2 (2003), 133–166 | DOI | MR | Zbl

[21] Turbin M. V., “Issledovanie nachalno-kraevoi zadachi dlya modeli dvizheniya zhidkosti Gershel—Balkli”, Vestn. Voronezh. gos. un-ta. Ser. Fiz. Mat., 2013, no. 2, 246–257

[22] Uizem Dzh., Lineinye i nelineinye volny, Mir, M., 1977

[23] Chernyatin V. A., Obosnovanie metoda Fure v smeshannoi zadache dlya uravnenii v chastnykh proizvodnykh, Izd-vo MGU, M., 1991

[24] Shabrov S. A., “Ob otsenkakh funktsii vliyaniya odnoi matematicheskoi modeli chetvertogo poryadka”, Vestn. Voronezh. gos. un-ta. Ser. Fiz. Mat., 2015, no. 2, 168–179 | Zbl

[25] Egamberdiev U., Apakov Yu. P., “O zadache Dirikhle dlya smeshannogo elliptiko-giperbolicheskogo uravneniya v trekhmernoi oblasti”, Izv. AN UzSSR, 1989, no. 3, 51–56 | MR

[26] Yuldashev T. K., “Smeshannaya zadacha dlya nelineinogo differentsialnogo uravneniya chetvertogo poryadka s malym parametrom pri parabolicheskom operatore”, Zh. vychisl. mat. mat. fiz., 51:9 (2011), 1703–1711 | MR | Zbl

[27] Yuldashev T. K., “Smeshannaya zadacha dlya nelineinogo differentsialnogo uravneniya chetvertogo poryadka s malym parametrom pri parabolicheskom operatore”, Zh. vychisl. mat. mat. fiz., 52:1 (2012), 112–123 | MR | Zbl

[28] Yuldashev T. K., “Ob odnom integro-differentsialnom uravnenii Fredgolma v chastnykh proizvodnykh tretego poryadka”, Izv. vuzov. Mat., 2015, no. 9, 74–79 | Zbl

[29] Yuldashev T. K., “Nelokalnaya smeshannaya zadacha dlya integro-differentsialnogo uravneniya tipa Bussineska s vyrozhdennym yadrom”, Ukr. mat. zh., 68:8 (2016), 1115–1131

[30] Yuldashev T. K., “Ob odnom smeshannom differentsialnom uravnenii chetvertogo poryadka”, Izv. in-ta mat. mekh. Udmurt. gos. un-ta, 47:1 (2016), 119–128 | Zbl

[31] Yuldashev T. K., “Smeshannaya zadacha dlya psevdoparabolicheskogo integro-differentsialnogo uravneniya s vyrozhdennym yadrom”, Differ. uravn., 53:1 (2017), 101–110 | DOI | MR | Zbl

[32] Benney D. J., Luke J. C., “Interactions of permanent waves of finite amplitude”, J. Math. Phys., 43 (1964), 309–313 | DOI | MR | Zbl

[33] Samoilenko A. M., Boichuk A. A., Krivosheya S. A., “Boundary-value problems for systems of integro-differential equations with degenerate kernel”, Ukr. mat. zh., 48:11 (1996), 1785–1789 | MR | Zbl