Metric spaces of bounded analytical functions
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Complex analysis, Tome 142 (2017), pp. 102-110.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider classes of analytical functions that map the unit disk into itself. Functions of these classes can be described in terms of hyperbolic derivative and hyperbolic metric. Under an appropriate choice of the corresponding metrics, these classes are metric spaces. Functions of the hyperbolic classes considered generate composition operators from the Bloch space into classical spaces of analytical functions in the unit disk.
Keywords: bounded analytical function, hyperbolic derivative, hyperbolic metric, composition operator.
@article{INTO_2017_142_a8,
     author = {Sh. A. Makhmutov and M. S. Makhmutova},
     title = {Metric spaces of bounded analytical functions},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {102--110},
     publisher = {mathdoc},
     volume = {142},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2017_142_a8/}
}
TY  - JOUR
AU  - Sh. A. Makhmutov
AU  - M. S. Makhmutova
TI  - Metric spaces of bounded analytical functions
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2017
SP  - 102
EP  - 110
VL  - 142
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2017_142_a8/
LA  - ru
ID  - INTO_2017_142_a8
ER  - 
%0 Journal Article
%A Sh. A. Makhmutov
%A M. S. Makhmutova
%T Metric spaces of bounded analytical functions
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2017
%P 102-110
%V 142
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2017_142_a8/
%G ru
%F INTO_2017_142_a8
Sh. A. Makhmutov; M. S. Makhmutova. Metric spaces of bounded analytical functions. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Complex analysis, Tome 142 (2017), pp. 102-110. http://geodesic.mathdoc.fr/item/INTO_2017_142_a8/