On the $\tau$-compactness of products of $\tau$-measurable operators adjoint to semi-finite von Neumann algebras
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations. Mathematical physics, Tome 140 (2017), pp. 78-87
Cet article a éte moissonné depuis la source Math-Net.Ru
Let ${\mathcal M}$ be the von Neumann algebra of operators in a Hilbert space $\mathcal H$ and $\tau$ be an exact normal semi-finite trace on $\mathcal{M}$. We obtain inequalities for permutations of products of $\tau$-measurable operators. We apply these inequalities to obtain new submajorizations (in the sense of Hardy, Littlewood, and Pólya) of products of $\tau$-measurable operators and a sufficient condition of orthogonality of certain nonnegative $\tau$-measurable operators. We state sufficient conditions of the $\tau$-compactness of products of self-adjoint $\tau$-measurable operators and obtain a criterion of the $\tau$-compactness of the product of a nonnegative $\tau$-measurable operator and an arbitrary $\tau$-measurable operator. We present an example that shows that the nonnegativity of one of factors is substantial. We also state a criterion of the elementary nature of the product of nonnegative operators from $\mathcal{M}$. All results are new for the *-algebra $\mathcal{B}(\mathcal{H})$ of all bounded linear operators in $\mathcal{H}$ endowed with the canonical trace $\tau=\operatorname{tr}$.
Keywords:
Hilbert space, linear operator, von Neumann algebra, normal semi-finite trace, $\tau$-measurable operator, $\tau$-compact operator, elementary operator, nilpotent, submajorization.
Mots-clés : permutation
Mots-clés : permutation
@article{INTO_2017_140_a6,
author = {A. M. Bikchentaev},
title = {On the $\tau$-compactness of products of $\tau$-measurable operators adjoint to semi-finite von {Neumann} algebras},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {78--87},
year = {2017},
volume = {140},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2017_140_a6/}
}
TY - JOUR AU - A. M. Bikchentaev TI - On the $\tau$-compactness of products of $\tau$-measurable operators adjoint to semi-finite von Neumann algebras JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2017 SP - 78 EP - 87 VL - 140 UR - http://geodesic.mathdoc.fr/item/INTO_2017_140_a6/ LA - ru ID - INTO_2017_140_a6 ER -
%0 Journal Article %A A. M. Bikchentaev %T On the $\tau$-compactness of products of $\tau$-measurable operators adjoint to semi-finite von Neumann algebras %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2017 %P 78-87 %V 140 %U http://geodesic.mathdoc.fr/item/INTO_2017_140_a6/ %G ru %F INTO_2017_140_a6
A. M. Bikchentaev. On the $\tau$-compactness of products of $\tau$-measurable operators adjoint to semi-finite von Neumann algebras. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations. Mathematical physics, Tome 140 (2017), pp. 78-87. http://geodesic.mathdoc.fr/item/INTO_2017_140_a6/