On the $\tau$-compactness of products of $\tau$-measurable operators adjoint to semi-finite von Neumann algebras
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations. Mathematical physics, Tome 140 (2017), pp. 78-87.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let ${\mathcal M}$ be the von Neumann algebra of operators in a Hilbert space $\mathcal H$ and $\tau$ be an exact normal semi-finite trace on $\mathcal{M}$. We obtain inequalities for permutations of products of $\tau$-measurable operators. We apply these inequalities to obtain new submajorizations (in the sense of Hardy, Littlewood, and Pólya) of products of $\tau$-measurable operators and a sufficient condition of orthogonality of certain nonnegative $\tau$-measurable operators. We state sufficient conditions of the $\tau$-compactness of products of self-adjoint $\tau$-measurable operators and obtain a criterion of the $\tau$-compactness of the product of a nonnegative $\tau$-measurable operator and an arbitrary $\tau$-measurable operator. We present an example that shows that the nonnegativity of one of factors is substantial. We also state a criterion of the elementary nature of the product of nonnegative operators from $\mathcal{M}$. All results are new for the *-algebra $\mathcal{B}(\mathcal{H})$ of all bounded linear operators in $\mathcal{H}$ endowed with the canonical trace $\tau=\operatorname{tr}$.
Keywords: Hilbert space, linear operator, von Neumann algebra, normal semi-finite trace, $\tau$-measurable operator, $\tau$-compact operator, elementary operator, nilpotent, submajorization.
Mots-clés : permutation
@article{INTO_2017_140_a6,
     author = {A. M. Bikchentaev},
     title = {On the $\tau$-compactness of products of $\tau$-measurable operators adjoint to semi-finite von {Neumann} algebras},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {78--87},
     publisher = {mathdoc},
     volume = {140},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2017_140_a6/}
}
TY  - JOUR
AU  - A. M. Bikchentaev
TI  - On the $\tau$-compactness of products of $\tau$-measurable operators adjoint to semi-finite von Neumann algebras
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2017
SP  - 78
EP  - 87
VL  - 140
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2017_140_a6/
LA  - ru
ID  - INTO_2017_140_a6
ER  - 
%0 Journal Article
%A A. M. Bikchentaev
%T On the $\tau$-compactness of products of $\tau$-measurable operators adjoint to semi-finite von Neumann algebras
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2017
%P 78-87
%V 140
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2017_140_a6/
%G ru
%F INTO_2017_140_a6
A. M. Bikchentaev. On the $\tau$-compactness of products of $\tau$-measurable operators adjoint to semi-finite von Neumann algebras. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations. Mathematical physics, Tome 140 (2017), pp. 78-87. http://geodesic.mathdoc.fr/item/INTO_2017_140_a6/