Spectral problem for the curl of a vector field in a nonorthogonal coordinate system
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations. Mathematical physics, Tome 140 (2017), pp. 50-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss computational aspects of the spectral problem for the curl of a vector field that allow one to find tangent fields to coordinate surfaces of a given curvilinear coordinate system.
Keywords: force-free field, curl, spectral problem, local nonorthogonal coordinate system, tangent field, coordinate surface.
Mots-clés : transition matrix, biorthogonal basis
@article{INTO_2017_140_a4,
     author = {G. G. Islamov},
     title = {Spectral problem for the curl of a vector field in a nonorthogonal coordinate system},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {50--67},
     publisher = {mathdoc},
     volume = {140},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2017_140_a4/}
}
TY  - JOUR
AU  - G. G. Islamov
TI  - Spectral problem for the curl of a vector field in a nonorthogonal coordinate system
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2017
SP  - 50
EP  - 67
VL  - 140
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2017_140_a4/
LA  - ru
ID  - INTO_2017_140_a4
ER  - 
%0 Journal Article
%A G. G. Islamov
%T Spectral problem for the curl of a vector field in a nonorthogonal coordinate system
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2017
%P 50-67
%V 140
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2017_140_a4/
%G ru
%F INTO_2017_140_a4
G. G. Islamov. Spectral problem for the curl of a vector field in a nonorthogonal coordinate system. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations. Mathematical physics, Tome 140 (2017), pp. 50-67. http://geodesic.mathdoc.fr/item/INTO_2017_140_a4/