Higher-order Bessel equations integrable in elementary functions
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations. Mathematical physics, Tome 140 (2017), pp. 3-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

The eigenfunction problem for a scalar Euler operator leads to an ordinary differential equation, which is an analog of higher-order Bessel equations. Its solutions are expressed through elementary functions in the case where the corresponding Euler operator can be factorized in a certain appropriate way. We obtain a formula describing such solutions. We consider the problem on common eigenfunctions of two Euler operators and present commuting Euler operators of orders $4$, $6$, and $10$ and a formula for their common eigenfunction and also commuting operators of orders $6$ and $9$.
Keywords: Euler operator, eigenfunction, commuting operators.
@article{INTO_2017_140_a0,
     author = {Yu. Yu. Bagderina},
     title = {Higher-order {Bessel} equations integrable in elementary functions},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {3--17},
     publisher = {mathdoc},
     volume = {140},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2017_140_a0/}
}
TY  - JOUR
AU  - Yu. Yu. Bagderina
TI  - Higher-order Bessel equations integrable in elementary functions
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2017
SP  - 3
EP  - 17
VL  - 140
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2017_140_a0/
LA  - ru
ID  - INTO_2017_140_a0
ER  - 
%0 Journal Article
%A Yu. Yu. Bagderina
%T Higher-order Bessel equations integrable in elementary functions
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2017
%P 3-17
%V 140
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2017_140_a0/
%G ru
%F INTO_2017_140_a0
Yu. Yu. Bagderina. Higher-order Bessel equations integrable in elementary functions. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations. Mathematical physics, Tome 140 (2017), pp. 3-17. http://geodesic.mathdoc.fr/item/INTO_2017_140_a0/