Hilbert problem for the Cauchy–Riemann equation with a singular circle and a singular point
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations. Mathematical physics, Tome 139 (2017), pp. 79-90
Cet article a éte moissonné depuis la source Math-Net.Ru
We examine a generalized Cauchy–Riemann-type system whose coefficients have singularities, construct the resolvent of the corresponding integral equation, and find an integral representation of the general solution.
Keywords:
generalized Cauchy–Riemann-type system, singular integral equation, Hilbert problem.
@article{INTO_2017_139_a7,
author = {A. B. Rasulov and M. A. Bobojanova and Yu. S. Fedorov},
title = {Hilbert problem for the {Cauchy{\textendash}Riemann} equation with a singular circle and a singular point},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {79--90},
year = {2017},
volume = {139},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2017_139_a7/}
}
TY - JOUR AU - A. B. Rasulov AU - M. A. Bobojanova AU - Yu. S. Fedorov TI - Hilbert problem for the Cauchy–Riemann equation with a singular circle and a singular point JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2017 SP - 79 EP - 90 VL - 139 UR - http://geodesic.mathdoc.fr/item/INTO_2017_139_a7/ LA - ru ID - INTO_2017_139_a7 ER -
%0 Journal Article %A A. B. Rasulov %A M. A. Bobojanova %A Yu. S. Fedorov %T Hilbert problem for the Cauchy–Riemann equation with a singular circle and a singular point %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2017 %P 79-90 %V 139 %U http://geodesic.mathdoc.fr/item/INTO_2017_139_a7/ %G ru %F INTO_2017_139_a7
A. B. Rasulov; M. A. Bobojanova; Yu. S. Fedorov. Hilbert problem for the Cauchy–Riemann equation with a singular circle and a singular point. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations. Mathematical physics, Tome 139 (2017), pp. 79-90. http://geodesic.mathdoc.fr/item/INTO_2017_139_a7/