On various approaches to asymptotics of solutions to the third Painlevé equation in a neighborhood of infinity
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations. Mathematical physics, Tome 139 (2017), pp. 70-78
Cet article a éte moissonné depuis la source Math-Net.Ru
We examine asymptotic expansions of the third Painlevé transcendents for $\alpha \delta \ne 0$ and $\gamma=0$ in a neighborhood of infinity in a sector of aperture ${<}2 \pi$ by the method of dominant balance). We compare intermediate results with results obtained by methods of three-dimensional power geometry. We find possible asymptotics in terms of elliptic functions, construct a power series, which represents an asymptotic expansion of a solution to the third Painlevé equation in a certain sector, estimate the aperture of this sector, and obtain a recurrent relation for the coefficients of the series.
Mots-clés :
Painlevé equations
Keywords: Newton polygon, asymptotic expansion, Gevrey order.
Keywords: Newton polygon, asymptotic expansion, Gevrey order.
@article{INTO_2017_139_a6,
author = {A. V. Vasilyev and A. V. Parusnikova},
title = {On various approaches to asymptotics of solutions to the third {Painlev\'e} equation in a neighborhood of infinity},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {70--78},
year = {2017},
volume = {139},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2017_139_a6/}
}
TY - JOUR AU - A. V. Vasilyev AU - A. V. Parusnikova TI - On various approaches to asymptotics of solutions to the third Painlevé equation in a neighborhood of infinity JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2017 SP - 70 EP - 78 VL - 139 UR - http://geodesic.mathdoc.fr/item/INTO_2017_139_a6/ LA - ru ID - INTO_2017_139_a6 ER -
%0 Journal Article %A A. V. Vasilyev %A A. V. Parusnikova %T On various approaches to asymptotics of solutions to the third Painlevé equation in a neighborhood of infinity %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2017 %P 70-78 %V 139 %U http://geodesic.mathdoc.fr/item/INTO_2017_139_a6/ %G ru %F INTO_2017_139_a6
A. V. Vasilyev; A. V. Parusnikova. On various approaches to asymptotics of solutions to the third Painlevé equation in a neighborhood of infinity. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations. Mathematical physics, Tome 139 (2017), pp. 70-78. http://geodesic.mathdoc.fr/item/INTO_2017_139_a6/