Solution of periodic boundary-value problems of the spatial theory of elasticity in the vector form
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations. Mathematical physics, Tome 139 (2017), pp. 59-69
Cet article a éte moissonné depuis la source Math-Net.Ru
We discuss boundary-value problems for the system of equations of the spatial theory of elasticity in the class of double-periodic functions and obtain a general solution of the system. We distinguish six types of elementary Floquet waves and examine their energy characteristics. We consider fundamental boundary-value problems in the half-space in the vector form. The diffraction problem for an elastic wave on a periodic system of defects in the vector form is reduced to the paired summator functional equation.
Keywords:
periodic system, theory of elasticity, Floquet wave.
@article{INTO_2017_139_a5,
author = {E. A. Osipov},
title = {Solution of periodic boundary-value problems of the spatial theory of elasticity in the vector form},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {59--69},
year = {2017},
volume = {139},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2017_139_a5/}
}
TY - JOUR AU - E. A. Osipov TI - Solution of periodic boundary-value problems of the spatial theory of elasticity in the vector form JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2017 SP - 59 EP - 69 VL - 139 UR - http://geodesic.mathdoc.fr/item/INTO_2017_139_a5/ LA - ru ID - INTO_2017_139_a5 ER -
%0 Journal Article %A E. A. Osipov %T Solution of periodic boundary-value problems of the spatial theory of elasticity in the vector form %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2017 %P 59-69 %V 139 %U http://geodesic.mathdoc.fr/item/INTO_2017_139_a5/ %G ru %F INTO_2017_139_a5
E. A. Osipov. Solution of periodic boundary-value problems of the spatial theory of elasticity in the vector form. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations. Mathematical physics, Tome 139 (2017), pp. 59-69. http://geodesic.mathdoc.fr/item/INTO_2017_139_a5/