Existence of weak solutions to an elliptic-parabolic equation with variable order of nonlinearity
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations. Mathematical physics, Tome 139 (2017), pp. 44-58
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider an equation with variable nonlinearity of the form $|u|^{p(x)}$, in which the parabolic term can vanish, i.e., in the corresponding domain the parabolic equation becomes “elliptic.” Under a weak monotonicity conditions (nonstrict inequality) we prove the existence of a solution to the first mixed problem in a cylinder with a bounded base.
Keywords:
weak solution, variable nonlinearity
Mots-clés : elliptic-parabolic equation, existence of solutions.
Mots-clés : elliptic-parabolic equation, existence of solutions.
@article{INTO_2017_139_a4,
author = {F. Kh. Mukminov and \`E. R. Andriyanova},
title = {Existence of weak solutions to an elliptic-parabolic equation with variable order of nonlinearity},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {44--58},
year = {2017},
volume = {139},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2017_139_a4/}
}
TY - JOUR AU - F. Kh. Mukminov AU - È. R. Andriyanova TI - Existence of weak solutions to an elliptic-parabolic equation with variable order of nonlinearity JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2017 SP - 44 EP - 58 VL - 139 UR - http://geodesic.mathdoc.fr/item/INTO_2017_139_a4/ LA - ru ID - INTO_2017_139_a4 ER -
%0 Journal Article %A F. Kh. Mukminov %A È. R. Andriyanova %T Existence of weak solutions to an elliptic-parabolic equation with variable order of nonlinearity %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2017 %P 44-58 %V 139 %U http://geodesic.mathdoc.fr/item/INTO_2017_139_a4/ %G ru %F INTO_2017_139_a4
F. Kh. Mukminov; È. R. Andriyanova. Existence of weak solutions to an elliptic-parabolic equation with variable order of nonlinearity. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations. Mathematical physics, Tome 139 (2017), pp. 44-58. http://geodesic.mathdoc.fr/item/INTO_2017_139_a4/